Skip to main content

Advertisement

Log in

Self-adaptive polynomial mutation in NSGA-II

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Evolutionary multi-objective optimization is a field that has experienced a rapid growth in the last two decades. Although an important number of new multi-objective evolutionary algorithms have been designed and implemented by the scientific community, the popular Non-Dominated Sorting Genetic Algorithm (NSGA-II) remains as a widely used baseline for algorithm performance comparison purposes and applied to different engineering problems. Since every evolutionary algorithm needs several parameters to be set up in order to operate, parameter control constitutes a crucial task for obtaining an effective and efficient performance in its execution. However, despite the advancements in parameter control for evolutionary algorithms, NSGA-II has been mainly used in the literature with fine-tuned static parameters. This paper introduces a novel and computationally lightweight self-adaptation mechanism for controlling the distribution index parameter of the polynomial mutation operator usually employed by NSGA-II in particular and by multi-objective evolutionary algorithms in general. Additionally, the classical NSGA-II using polynomial mutation with a static distribution index is compared with this new version utilizing a self-adapted parameter. The experiments carried out over twenty-five benchmark problems show that the proposed modified NSGA-II with a self-adaptive mutator outperforms its static counterpart in more than 75% of the problems using three quality metrics (hypervolume, generalized spread, and modified inverted generational distance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Algorithm 3
Algorithm 4
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this work are available from the corresponding author upon request.

Notes

  1. A deceptive search space is characterized by the fact that most of it tends to guide the search towards areas which are far from the global optimum, thus leading to a suboptimal local optimum.

  2. https://jmetal.github.io/jMetal/.

References

  • Aleti A, Moser I (2016) A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv (CSUR) 49(3):1–35. https://doi.org/10.1145/2996355

    Article  Google Scholar 

  • Angeline PJ (1995) Adaptive and self-adaptive evolutionary computations. In: Palaniswami M, Attikiouzel Y (eds) Computational intelligence: a dynamic systems perspective. IEEE Press, New York, pp 152–163

    Google Scholar 

  • Audet C, Bigeon J, Cartier D, Digabel SL, Salomon L (2020) Performance indicators in multiobjective optimization. Eur J Oper Res 292(2):397–422. https://doi.org/10.1016/j.ejor.2020.11.016

    Article  MathSciNet  MATH  Google Scholar 

  • Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hypervolume indicator: optimal \(\mu \)-distributions and the choice of the reference point. In: Proceedings of the tenth ACM SIGEVO workshop on foundations of genetic algorithms - FOGA ’09 https://doi.org/10.1145/1527125.1527138

  • Auger A, Stutzle T, Sharma M, Komninos A, López-Ibánez M, Kazakov D (2019) Deep reinforcement learning based parameter control in differential evolution. In: Proceedings of the genetic and evolutionary computation conference pp. 709–717. https://doi.org/10.1145/3321707.3321813

  • Back T (1992) The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm. In: Parallel problem solving from nature 2, PPSN-II. Elsevier, Brussels, Belgium

  • Back T, Schutz M (1996) Intelligent mutation rate control in canonical genetic algorithms. In: ISMIS ’96: Proceedings of the 9th international symposium on foundations of intelligent systems. Springer, Berlin, Heidelberg, pp 158–167, https://doi.org/10.1007/3-540-61286-6_141

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76. https://doi.org/10.1162/evco_a_00009

    Article  Google Scholar 

  • Birattari M, Yuan Z, Balaprakash P, Stuzle T (2010) F-race and iterated f-race: an overview. In: Experimental methods for the analysis of optimization algorithms. Springer, Berlin, Heidelberg, pp 311–336, https://doi.org/10.1007/978-3-642-02538-9_13

  • Bosman PAN, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput. https://doi.org/10.1109/tevc.2003.810761

    Article  Google Scholar 

  • Bosman PAN, Cruz-Salinas AF, Perdomo JG (2017) Self-adaptation of genetic operators through genetic programming techniques. In: Proceedings of the genetic and evolutionary computation conference. Association for Computing Machinery, Berlin, pp 913–920, https://doi.org/10.1145/3071178.3071214

  • Coello CAC, Sierra MR (2004) A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: MICAI 2004: advances in artificial intelligence, third Mexican international conference on artificial intelligence. Springer, Mexico City, https://doi.org/10.1007/978-3-540-24694-7_71

  • Deb K, Agrawal S, Pratap A, Mayarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel problem solving from nature PPSN VI, lecture notes in computer science, vol 1917. Springer, Berlin, pp 849–858, https://doi.org/10.1007/3-540-45356-3_83

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02, vol 1. IEEE, Honolulu, pp 825–830, https://doi.org/10.1109/cec.2002.1007032

  • Deb K, Sindhya K, Okabe T (2007) Self-adaptive simulated binary crossover for real-parameter optimization. In: Proceedings of the 9th annual conference on genetic and evolutionary computation. Association for computing machinery, London, GECCO ’07, p 1187-1194, https://doi.org/10.1145/1276958.1277190

  • Doerr B, Doerr C (2020) Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Theory of evolutionary computation, recent developments in discrete optimization. Springer International Publishing, Cham, pp 271–321, https://doi.org/10.1007/978-3-030-29414-4_6

  • Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multi-objective optimization. In: Advances in Engineering Software, vol 42, no. 10. Elsevier, Oxford, pp 760–771, https://doi.org/10.1016/j.advengsoft.2011.05.014

  • Eiben A, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141. https://doi.org/10.1109/4235.771166

    Article  Google Scholar 

  • Eiben AE, Horvath M, Kowalczyk W, Schut MC (2007) Reinforcement learning for online control of evolutionary algorithms. In: Engineering self-organising systems, 4th international workshop, ESOA 2006. Springer, Hakodate, Japan, pp 151–160, https://doi.org/10.1007/978-3-540-69868-5_10

  • Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523. https://doi.org/10.1016/j.ins.2018.11.041

    Article  Google Scholar 

  • Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128. https://doi.org/10.1109/tsmc.1986.289288

    Article  Google Scholar 

  • Hamdan MM (2012) The distribution index in polynomial mutation for evolutionary multiobjective optimisation algorithms: an experimental study. In: Proceedings of international conference on electronics computer technology

  • Hamdan MM (2014) Revisiting the distribution index in simulated binary crossover operator for evolutionary multiobjective optimisation algorithms. In: 2014 fourth international conference on digital information and communication technology and its applications (DICTAP) pp 37–41. https://doi.org/10.1109/dictap.2014.6821653

  • Hansen MP, Jaszkiewicz A (1998) Evaluating the quality of approximations to the non-dominated set. Technical University of Denmark, Technical Report IMM-REP-1998-7, Denmark

  • Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath VBS (2019) Choosing mutation and crossover ratios for genetic algorithms-a review with a new dynamic approach. Information 10(12):390. https://doi.org/10.3390/info10120390

    Article  Google Scholar 

  • Hinterding R, Michalewicz Z, Eiben AE (1997) Adaptation in evolutionary computation: a survey. In: Proceedings of 1997 IEEE international conference on evolutionary computation (ICEC ’97). IEEE, Indianapolis

  • Huang C, Li Y, Yao X (2020) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput 24(2):201–216. https://doi.org/10.1109/tevc.2019.2921598

    Article  Google Scholar 

  • Huang C, Bai H, Yao X (2022) Online algorithm configuration for differential evolution algorithm. Appl Intell. https://doi.org/10.1007/s10489-021-02752-1

    Article  Google Scholar 

  • Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test problem toolkit. In: Evolutionary multi-criterion optimization, third international conference, EMO 2005, lecture notes in computer science, vol 3410. Springer, Guanajuato, México, pp 280–295, https://doi.org/10.1007/978-3-540-31880-4_20

  • Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and localsearch in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223. https://doi.org/10.1109/tevc.2003.810752

    Article  Google Scholar 

  • Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2015) Modified distance calculation in generational distance and inverted generational distance. In: Proceedings of 8th international conference on evolutionary multi-criterion optimization. Springer, Guimaraes, Portugal, pp 110–125, https://doi.org/10.1007/978-3-319-15892-1_8

  • Ishibuchi H, Imada R, Setoguchi Y, Nojima Y (2018) How to specify a reference point in hypervolume calculation for fair performance comparison. Evol Comput 26(3):411–440. https://doi.org/10.1162/evco_a_00226

    Article  Google Scholar 

  • Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404. https://doi.org/10.1109/tcyb.2014.2307319

    Article  Google Scholar 

  • Jong KAD (1975) Analysis of the beavior of a class of genetic adaptive systems. PhD thesis, Computer and Communication Sciences Department, University of Michigan

  • Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187. https://doi.org/10.1109/tevc.2014.2308294

    Article  Google Scholar 

  • Knowles J, Corne D (2002) On metrics for comparing nondominated sets. In: Proceedings of the 2002 congress on evolutionary computation. CEC’02, vol 1. IEEE, Honolulu, pp 711–716, https://doi.org/10.1109/cec.2002.1007013

  • Knowles JD (2002) Local-search and hybrid evolutionary algorithms for pareto optimization. PhD thesis, Department of Computer Science, University of Reading

  • Kochenderfer MJ, Wheeler TA (2019) Algorithms for optimization. The MIT Press, Cambridge and London

    MATH  Google Scholar 

  • Korejo I, Yang S, Li C (2009) A comparative study of adaptive mutation operators for genetic algorithms. In: The VIII metaheuristic international conference, Hamburg, Germany

  • Kundu T, Garg H (2022) A hybrid ITLHHO algorithm for numerical and engineering optimization problems. Int J Intell Syst 37(7):3900–3980. https://doi.org/10.1002/int.22707

    Article  Google Scholar 

  • Kundu T, Garg H (2022) LSMA-TLBO: a hybrid SMA-TLBO algorithm with lévy flight based mutation for numerical optimization and engineering design problems. Adv Eng Software. https://doi.org/10.1016/j.advengsoft.2022.103185

    Article  Google Scholar 

  • Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Schwefel HP, Männer R (eds) Parallel problem solving from nature. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 193–197, https://doi.org/10.1007/BFb0029752

  • Lacerda MGPd, Pessoa LFdA, Neto FBdL, Ludermir TB, Kuchen H (2021) A systematic literature review on general parameter control for evolutionary and swarm-based algorithms. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2020.100777

    Article  Google Scholar 

  • Lee CY, Yao X (2004) Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans Evol Comput 8(1):1–13. https://doi.org/10.1109/tevc.2003.816583

    Article  Google Scholar 

  • Li M, Yao X (2019) Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput Surv (CSUR) 52(2):26. https://doi.org/10.1145/3300148

    Article  Google Scholar 

  • Liu Z, Chen G, Ong C, Yao Z, Li X, Deng J, Cui F (2023) Multi-objective design optimization of stent-grafts for the aortic arch. Mater Des. https://doi.org/10.1016/j.matdes.2023.111748

    Article  Google Scholar 

  • Lobo FG, Lima CF, Michalewicz Z (2007) Parameter setting in evolutionary algorithms, studies in computation intelligence, vol 54. Springer, Berlin, Heidelberg,. https://doi.org/10.1007/978-3-540-69432-8

  • Long Q, Li G, Jiang L (2022) A novel solver for multi-objective optimization: dynamic non-dominated sorting genetic algorithm (DNSGA). Soft Comput 26(2):725–747. https://doi.org/10.1007/s00500-021-06223-0

    Article  Google Scholar 

  • Lopez EM, A C, Coello C (2016) IGD+ -EMOA: a multi-objective evolutionary algorithm based on IGD+. In: 2016 IEEE congress on evolutionary computation (CEC), pp 999–1006, https://doi.org/10.1109/cec.2016.7743898

  • López-Ibánez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stutzle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58. https://doi.org/10.1016/j.orp.2016.09.002

    Article  MathSciNet  Google Scholar 

  • Mezura-Montes E, Palomeque-Ortiz AG (2009) Self-adaptive and deterministic parameter control in differential evolution for constrained optimization. In: Constraint-handling in evolutionary optimization, pp 95–120, https://doi.org/10.1007/978-3-642-00619-7_5

  • Mohamed A, Oliva D, Suganthan P (2022) Handbook of nature-inspired optimization algorithms: the state of the art: Volume II: solving constrained single objective real-parameter optimization problems. Studies in systems, decision and control, Springer International Publishing https://doi.org/10.1007/978-3-031-07516-2

  • Nama S, Sharma S, Saha AK, Gandomi AH (2022) A quantum mutation-based backtracking search algorithm. Artif Intell Rev 55(4):3019–3073. https://doi.org/10.1007/s10462-021-10078-0

    Article  Google Scholar 

  • Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans Evol Comput 12(4):439–457. https://doi.org/10.1109/tevc.2007.913109

    Article  Google Scholar 

  • Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multi-objective optimisation. In: The 2003 congress on evolutionary computation, 2003. CEC ’03, vol 2. IEEE, Canberra, Australia, pp 878–885, https://doi.org/10.1109/cec.2003.1299759

  • Ozcelikkan N, Tuzkaya G, Alabas-Uslu C, Sennaroglu B (2022) A multi-objective agile project planning model and a comparative meta-heuristic approach. Inf Softw Technol. https://doi.org/10.1016/j.infsof.2022.107023

    Article  Google Scholar 

  • Papa G, (2021) Applications of dynamic parameter control in evolutionary computation. In, (2021) Genetic and evolutionary computation conference companion (GECCO ’21 Companion). ACM, Lille, France, proceedings of the genetic and evolutionary computation conference companion, DOI 10(1145/3449726):3461435

  • Parpinelli RS, Plichoski GF, Silva RSD, Narloch PH (2019) A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms. Int J Bio-Inspired Comput 13(1):1. https://doi.org/10.1504/ijbic.2019.097731

    Article  Google Scholar 

  • Rahimi I, Gandomi AH, Deb K, Chen F, Nikoo MR (2022) Scheduling by NSGA-II: review and bibliometric analysis. Processes 10(1):98. https://doi.org/10.3390/pr10010098

    Article  Google Scholar 

  • Rajabi A, Witt C (2020) Self-adjusting evolutionary algorithms for multimodal optimization. In: Proceedings of GECCO ’20. ACM Press, Cancun, Mexico, pp 1314–1322, https://doi.org/10.1007/s00453-022-00933-z

  • Rechenberg I (1971) Evolutionsstrategie; optimierung technischer systeme nach prinzipien der biologischen evolution. PhD thesis, Department of Process Engineering, Technical University of Berlin

  • Riquelme N, Lucken CV, Barán B, (2015) Performance metrics in multi-objective optimization. In: 2015 Latin American computing conference (CLEI). IEEE, Arequipa, Perú,. https://doi.org/10.1109/clei.2015.7360024

  • Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st international conference on genetic algorithms. L. Erlbaum Associates Inc., Sheffield, UK, pp 93–100

  • Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. PhD thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

  • Sharma S, Khodadadi N, Saha AK, Gharehchopogh FS, Mirjalili S (2023) Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. J Bionic Eng 20(2):819–843. https://doi.org/10.1007/s42235-022-00288-9

    Article  Google Scholar 

  • Smith J, Fogarty T (1996) Self adaptation of mutation rates in a steady state genetic algorithm. In: Proceedings of 1996 IEEE international conference on evolutionary computation. IEEE, Nagoya, Japan, pp 318–323, https://doi.org/10.1109/icec.1996.542382

  • Smith JE, Fogarty TC (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87. https://doi.org/10.1007/s005000050009

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/a:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  • Tan K, Chiam S, Mamun A, Goh C (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197(2):701–713. https://doi.org/10.1016/j.ejor.2008.07.025

    Article  MATH  Google Scholar 

  • Tanabe R, Ishibuchi H (2020) An Analysis of Quality Indicators Using Approximated Optimal Distributions in a 3-D Objective Space. IEEE Trans Evol Comput 24(5):853–867

    Article  Google Scholar 

  • Tanaka M, Watanabe H, Furukawa Y, Tanino T (1995) GA-based decision support system for multicriteria optimization. In: 1995 IEEE international conference on systems, man and cybernetics. Intelligent systems for the 21st century, vol 2. IEEE, Vancouver, British Columbia, Canada, pp 1556–1561, https://doi.org/10.1109/icsmc.1995.537993

  • Tinós R, Yang S (2007) Self-adaptation of mutation distribution in evolutionary algorithms. In: 2007 IEEE congress on evolutionary computation. IEEE, Singapore, pp 79–86, https://doi.org/10.1109/cec.2007.4424457

  • Veldhuizen DAV, Lamont GB (1998) Evolutionary computation and convergence to a pareto front. Late-breaking papers book at the genetic programming 1998 conference (GP-98). Stanford University Bookstore, Winsconsin, pp 221–228

  • Wang J, Liu Y, Ren S, Wang C, Ma S (2023) Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window. Robot Comput Integr Manuf. https://doi.org/10.1016/j.rcim.2022.102435

    Article  Google Scholar 

  • Wang S, Ali S, Yue T, Li Y, Liaaen M (2016) A practical guide to select quality indicators for assessing pareto-based search algorithms in search based software engineering. In: IEEE/ACM 38th IEEE international conference on software engineering. IEEE, Austin, https://doi.org/10.1145/2884781.2884880

  • Yang S, Uyar S (2006) Adaptive mutation with fitness and allele distribution correlation for genetic algorithms. In: Proceedings of the 2006 ACM symposium on Applied computing - SAC ’06. ACM, Dijon, France, pp 940–944, https://doi.org/10.1145/1141277.1141499

  • Zeng F, Low MYH, Decraene J, Zhou S, Cai W (2010) Self-adaptive mechanism for multi-objective evolutionary algorithms. In: Proceedings of the international multiconference of engineers and computer scientists pp. 7–12

  • Zhang J, Chen WN, Zhan ZH, Yu WJ, Li YL, Chen N, Zhou Q (2012) A survey on algorithm adaptation in evolutionary computation. Front Electr Electr Eng 7(1):16–31. https://doi.org/10.1007/s11460-012-0192-0

    Article  Google Scholar 

  • Zhao Z, Liu B, Zhang C, Liu H (2019) An improved adaptive NSGA-II with multi-population algorithm. Appl Intell 49(2):569–580. https://doi.org/10.1007/s10489-018-1263-6

    Article  Google Scholar 

  • Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E (2006) Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE international conference on evolutionary computation. IEEE, Vancouver, pp 892–899, https://doi.org/10.1109/cec.2006.1688406

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271. https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (1999) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VGd (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(13):117–132. https://doi.org/10.1109/tevc.2003.810758

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jose L. Carles-Bou. The first draft of the manuscript was written by Jose L. Carles-Bou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jose L. Carles-Bou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest either financial or non-financial.

Research involving Human Participants and/or Animals

The authors declare no human or animals where involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carles-Bou, J.L., Galán, S.F. Self-adaptive polynomial mutation in NSGA-II. Soft Comput 27, 17711–17727 (2023). https://doi.org/10.1007/s00500-023-09049-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09049-0

Keywords

Navigation