Skip to main content
Log in

A fuzzy/possibility approach for area coverage in wireless sensor networks

  • Mathematical methods in data science
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The literature approaches, devoted to sensor improve network coverage, are deterministic in terms of deployment environment and node configuration parameters. Nevertheless, this type of approaches has not proven to be very successful in uncertain deployment environments. This paper aims to deal with this issue using theories of uncertainty. We consider deployment environment’s imperfections and the characteristics of the sensor nodes. The selection of a minimum number of nodes for a minimum number of clusters to guarantee coverage in wireless sensor networks (WSNs) is uncertain. As a consequence, this paper proposes a hybrid Fuzzy-Possibilistic model to Schedule the Active/Passive State of Sensor nodes Strategy (FP-3SNS). This model helps to plan the scheduling of node states (Active/Passive) based on possibilistic information fusion to make a possibilistic decision for the node activation at each period. We evaluated our model (FP-3SNS) with (a) a running example (that shows the best choice of the active node with a probability of 0.81215); (b) a statistical evaluation (calculation of the confidence interface), where the average coverage reliability at 95% of FP-3SNS use is between (92.94, 96.27); and (c) a comparison with maximum sensing coverage region problem (MSCR), coverage maximization with sleep scheduling (CMSS), Spider Canvas Strategy, Semi-Random Deployment Strategy (SRDP), Probing Environment and Adaptive Sleeping with Location Information Protocol (PEAS-LI), and Variable Length Particle Swarm Optimization Algorithm with a Weighted Sum Fitness Function (WS-VLPSO). The simulation results highlight the benefits of using the fuzzy and possibility theories for treating the area coverage problem and the proposed model maintained a coverage between 99.99 and 90.00% for a significant period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

Download references

Funding

This research was not funded. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Adda Boualem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Ethical approval

This article does not contain any studies with human or animals performed by any of the authors.

Informed consent

No human were involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boualem, A., De Runz, C., Ayaida, M. et al. A fuzzy/possibility approach for area coverage in wireless sensor networks. Soft Comput 27, 9367–9382 (2023). https://doi.org/10.1007/s00500-023-08406-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08406-3

Keywords

Navigation