Skip to main content

Advertisement

Log in

Automotive magnetorheological dampers: modelling and parameter identification using contrast-based fruit fly optimisation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The present study discusses the mechanical behaviour and modelling of a prototype automotive magnetorheological (MR) damper, which presents different viscous damping coefficients in jounce and rebound. The force generated by the MR damper is measured at different velocities and electrical currents, and a modified damper model is proposed to improve fitting of the experimental data. The model is calibrated by means of parameter identification, and for this purpose a new swarm intelligence algorithm is proposed, that we call the contrast-based Fruit Fly Optimisation Algorithm (c-FOA). The performance of c-FOA is compared with that of Genetic Algorithms, Particle Swarm Optimisation, Differential Evolution and Artificial Bee Colony. The comparison is made on the basis of no a-priori knowledge of the damper model parameters range. The results confirm the good performance of c-FOA under parametric range uncertainty. A sensitivity analysis discusses c-FOA’s performance with respect to its tuning parameters. Finally, a ride comfort simulation study quantifies the discrepancies in the results, for different identified damper model sets. The discrepancies underline the importance of accurately describing MR damper nonlinear behaviour, considering that virtual sign-off processes are increasingly gaining momentum in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alajmi A, Wright J (2014) Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int J Sustain Built Environ 3(1):18–26

    Article  Google Scholar 

  • Ashtiani M, Hashemabadi SH, Ghaffari A (2014) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:716–730

    Article  Google Scholar 

  • Ata WG, Salem AM (2017) Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers. Veh Syst Dyn 55(5):626–647

    Article  Google Scholar 

  • Ayala HVH, Coelho LDS (2016) Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks. Mech Syst Signal Process 68–69:378–393

    Article  Google Scholar 

  • Boada MJL, Calvo JA, Boada BL, Díaz V (2011) Modeling of a magnetorheological damper by recursive lazy learning. Int J Non-Linear Mech 46(3):479–485

    Article  Google Scholar 

  • Case D, Taheri B, Richer E (2015) A lumped-parameter model for adaptive dynamic mr damper control. IEEE/ASME Trans Mechatron 20(4):1689–1696 art. no. 6918454

    Article  Google Scholar 

  • Çeşmeci Ş, Engin T (2010) Modeling and testing of a field-controllable magnetorheological fluid damper. Int J Mech Sci 52(8):1036–1046

    Article  Google Scholar 

  • Charalampakis AE, Koumousis VK (2008) Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. J Sound Vib 314(3–5):571–585

    Article  Google Scholar 

  • Diwold K, Aderhold A, Scheidler A, Middendorf M (2011) Performance evaluation of artificial bee colony optimization and new selection schemes. Memet Comput 3(3):149–162

    Article  Google Scholar 

  • Dixon J (2008) The shock absorber handbook. John Wiley & Sons, Hoboken

    Google Scholar 

  • Fellah Jahromi A, Bhat RB, Xie W-F (2015) Frequency dependent Spencer modeling of magnetorheological damper using hybrid optimisation approach. Shock and Vibration, art. no. 382541

  • Ghaffari A, Hashemabadi SH, Ashtiani M (2015) A review on the simulation and modeling of magnetorheological fluids. J Intell Mater Syst Struct 26(8):881–904

    Article  Google Scholar 

  • Goldasz J (2016) Insight into magnetorheological shock absorbers. Springer, Berlin

    Google Scholar 

  • Guan XC, Guo PF, Ou JP (2011) Modeling and analyzing of hysteresis behavior of magneto rheological dampers. Procedia Eng 14:2756–2764

    Article  Google Scholar 

  • Guo P, Guan X, Ou J (2014) Physical modeling and design method of the hysteretic behavior of magnetorheological dampers. J Intell Mater Syst Struct 25(6):680–696

    Article  Google Scholar 

  • Guoqiang L, Niu P, Xiao X (2012) Development and Investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl Soft Comput 12(1):320–332

    Article  Google Scholar 

  • Han Y-Y, He G-T, Lin Y-C, Xu Z-Y, Zhu X-Q, Liu Y-F, Zhao J, Li X-Z (2013) Reviews on the magnetic particles of magnetorheological fluids. Gongneng Cailiao J Funct Mater 44(24):3513–3519

    Google Scholar 

  • http://repository.tudelft.nl/islandora/object/uuid:d369bfac-4d8a-465c-a194-864bbe87d8e8?collection=research, Accessed 16 Jan 2017

  • http://www.ijert.org/view-pdf/12128/experimental-investigation-of-the-effect-of-magneto-rheological-mr-damper-on-a-rotating-unbalance-sdof-system, Accessed 16 May 2016

  • http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/a-road-map-to-the-future-for-the-auto-industry, Accessed 25 July 2017

  • http://www.nncn.de/en/news/Forschungsergebnisse-en/memories-of-fruit-fly-larvae-are-more-complex-than-thought, Accessed 17 Dec 2016

  • http://www1.icsi.berkeley.edu/~storn/code.html#matl, Accessed 16 Jan 2017

  • http://www1.icsi.berkeley.edu/~storn/code.html, Accessed 17 Dec 2016

  • https://pdfs.semanticscholar.org/48aa/36e1496c56904f9f6dfc15323e0c45e34a4c.pdf, Accessed 17 Dec 2016

  • https://www.mathworks.com/matlabcentral/answers/uploaded_files/20100/Fruit%20Fly%20Optimization%20Algorithm_Second%20Edition.pdf, Accessed 17 Dec 2016

  • Hu T, Harding S, Banzhaf W (2010) Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet Program Evol Mach 11(2):205–225

    Article  Google Scholar 

  • Hu G, Liu Q, Ding R, Li G (2017) Vibration control of semi-active suspension system with magnetorheological damper based on hyperbolic tangent model. Adv Mech Eng 9(5):168781401769458

    Article  Google Scholar 

  • Isermann R, Munchhof M (2011) Identification of dynamical systems, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Kanarachos S, Griffin J, Fitzpatrick M (2017) Efficient truss optimization using the contrast-based fruit fly optimization algorithm. Comput Struct 182:137–148

    Article  Google Scholar 

  • Kasprzyk J, Wyrwał J, Krauze P (2014) Automotive MR damper modeling for semi-active vibration control. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM art. no. 6878127, pp 500–505

  • Khalid M, Yusof R, Joshani M, Selamat H, Joshani M (2014) Nonlinear identification of a magneto-rheological damper based on dynamic neural networks. Comput Aided Civ Infrastruct Eng 29(3):221–233

    Article  Google Scholar 

  • Kwok NM, Ha QP, Nguyen TH, Li J, Samali B (2006) A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens Actuators A Phys 132(2):441–451

    Article  Google Scholar 

  • Kwok NM, Ha QP, Nguyen MT, Li J, Samali B (2007) Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans 46(2):167–179

    Article  Google Scholar 

  • Li Jun-qing, Pan Quan-ke, Mao Kun, Suganthan PN (2014) Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowl Based Syst 72:28–36

    Article  Google Scholar 

  • Londoño J, Neild S, Wagg D (2015) Using a damper amplification factor to increase energy dissipation in structures. Eng Struct 84:162–171

    Article  Google Scholar 

  • Lutz A, Schick B, Holzmann H, Kochem M, Meyer-Tuve H, Lange O, Mao Y, Tosolin G (2017) Simulation methods supporting homologation of Electronic Stability Control in vehicle variants. Veh Syst Dyn 55(10):1432–1497

    Article  Google Scholar 

  • Metered H, Bonello P, Oyadiji SO (2010) The experimental identification of magnetorheological dampers and evaluation of their controllers. Mech Syst Signal Process 24(4):976–994

    Article  Google Scholar 

  • Mitic Marko, Vukovic Najdan, Petrovic Milica, Miljkovic Zoran (2015) Chaotic fruit fly optimisation algorithm. Knowl Based Syst 89:446–458

    Article  Google Scholar 

  • Pan W-T (2012) A new Fruit fly optimisation algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Article  Google Scholar 

  • Savitski D, Ivanov V, Augsburg K, Dhaens M, Els S, Sandu C (2015) State-of-the-art and future developments in integrated chassis control for ground vehicl

  • Seifi A, Hassannejad R, Hamed M (2016) Use of nonlinear asymmetrical shock absorbers in multi-objective optimization of the suspension system in a variety of road excitations. In: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics

    Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming VII. EP 1998. Lecture notes in computer science, vol 1447. Springer, Berlin, Heidelberg

  • Silveira M, Pontes B, Balthazar J (2014) Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J Sound Vib 333(7):2114–2129

    Article  Google Scholar 

  • Silveira M, Wahi P, Fernandes J (2016) Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Commun Nonlinear Sci Numer Simul 43:14–24

    Article  MathSciNet  Google Scholar 

  • Sims N (2006) Limit cycle behavior of smart fluid dampers under closed loop control. J Vib Acoust 128(4):413

    Article  MathSciNet  Google Scholar 

  • Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing, Berkeley, CA, pp 519–523

  • Strecker Z, Roupec J, Maůrek I, Klapka M (2015) Limiting factors of the response time of the magnetorheological damper. Int J Appl Electromag Mech 47(2):541–550 art. no. jae140006

    Google Scholar 

  • Strecker Z, Mazůrek I, Roupec J, Klapka M (2015) Influence of MR damper response time on semiactive suspension control efficiency. Meccanica 50(8):1949–1959

    Article  Google Scholar 

  • Talatahari S, Rahbari NM (2015) Enriched Imperialist Competitive Algorithm for system identification of magneto-rheological dampers. Mech Syst Signal Process 62:506–516

    Article  Google Scholar 

  • Talatahari S, Kaveh A, Mohajer Rahbari N (2012) Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization. J Mech Sci Technol 26(8):2523–2534

    Article  Google Scholar 

  • Van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24(3):274–286

    Article  Google Scholar 

  • Wang DH, Liao WH (2011) Magnetorheological fluid dampers: A review of parametric modelling. Smart Materials and Structures, 20 (2), art. no. 023001

    Article  Google Scholar 

  • Weber F (2014) Semi-active vibration absorber based on real-time controlled MR damper. Mech Syst Signal Process 46(2):272–288

    Article  Google Scholar 

  • Wu Lianghong, Zuo Cili, Zhang Hongqiang (2015) A cloud model based fruit fly optimisation algorithm. Knowl Based Syst 89:603–617

    Article  Google Scholar 

  • Xu Z, Jia D, Zhang X (2012) Performance tests and mathematical model considering magnetic saturation for magnetorheological damper. J Intell Mater Syst Struct 23(12):1331–1349

    Article  Google Scholar 

  • Yang M-G, Li C-Y, Chen Z-Q (2013) A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment. Eng Struct 52:434–445

    Article  Google Scholar 

  • Zhang J, Yue J, Zhang L, Jia J, Peng Z (2013) Design of magnetorheological damper control system for vehicle suspension. Appl Mech Mater 278–280:1436–1441

    Google Scholar 

  • Zhang C, Chen Z, Wang L (2014) An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers. Mech Time Depend Mater 19(1):61–74

    Article  Google Scholar 

  • Zhang X, Zhang X, Zhao Y, Zhao J, Xu Z (2017) Experimental and numerical studies on a composite MR damper considering magnetic saturation effect. Eng Struct 132:576–585

    Article  Google Scholar 

Download references

Acknowledgements

MEF is grateful for funding from the Lloyd’s Register Foundation, a charitable foundation helping to protect life and property by supporting engineering-related education, public engagement and the application of research. We would like to thank Mr Georgios Chrysakis for developing the MR damper current controller and contributing to the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stratis Kanarachos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Appendix A

Appendix A

See Tables 10, 11, 12, 13 and 14.

Table 10 Statistical analysis of the optimisation results obtained by applying Genetic Algorithm, 30 independent times
Table 11 Statistical analysis of the optimisation results obtained by applying Differential Evolution, 30 independent times
Table 12 Statistical analysis of the optimisation results obtained by applying, 30 independent times, Particle Swarm Optimisation
Table 13 Statistical analysis of the optimisation results obtained by applying, 30 independent times, Artificial Bee Colony
Table 14 Statistical analysis of the optimisation results obtained by applying, 30 independent times, c-FOA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanarachos, S., Savitski, D., Lagaros, N. et al. Automotive magnetorheological dampers: modelling and parameter identification using contrast-based fruit fly optimisation. Soft Comput 22, 8131–8149 (2018). https://doi.org/10.1007/s00500-017-2757-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2757-6

Keywords

Navigation