Skip to main content
Log in

Decision making with the generalized intuitionistic fuzzy power interaction averaging operators

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Considering the interactions between different intuitionistic fuzzy sets, this paper extends the power averaging operators to intuitionistic fuzzy environments and develops some intuitionistic fuzzy power interaction aggregation operators, including the generalized intuitionistic fuzzy power interaction averaging operator, the weighted generalized intuitionistic fuzzy power interaction averaging operator and the generalized intuitionistic fuzzy power ordered weighted interaction averaging operator. The properties of these aggregation operators are investigated. The key advantages of these operators are that they not only accommodate situations in which the input arguments are intuitionistic fuzzy numbers (IFNs) and take the interactions of different IFNs into consideration, but also consider the decision situations that the relationships between the IFNs are fused. Moreover, we apply the new proposed aggregation operators to multiple attributes decision making and examples are illustrated to show the validity and feasibility of the new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akram M, Dudek WA (2013) Intuitionistic fuzzy hypergraphs with applications. Inf Sci 218:182–193

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (1994) New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst 61:137–142

    Article  MathSciNet  MATH  Google Scholar 

  • Beliakov G, Bustince H, Goswami DP, Mukherjee UK, Pal NR (2011) On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf Sci 181:1116–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SM, Tan JM (1994) Handling multi-criteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 67:163–172

    Article  MATH  Google Scholar 

  • De SK, Biswas R, Roy AR (2000) Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst 114:477–484

    Article  MathSciNet  MATH  Google Scholar 

  • He YD, He Z, Wang GD, Chen HY (2015a) Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2014.2372074

  • He YD, Chen HY, Zhou LG, Liu JP, Tao ZF (2014) Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Inf Sci 259:142–159

    Article  MathSciNet  MATH  Google Scholar 

  • He YD, Chen HY, Zhou LG, Han B, Zhao QY, Liu JP (2014) Generalized intuitionistic fuzzy geometric interaction operators and their application to decision making. Expert Syst Appl 41:2484–2495

    Article  Google Scholar 

  • He YD, He Z, Chen HY (2015) Intuitionistic fuzzy interaction Bonferroni means and its application to multiple attribute decision making. IEEE Trans Cybern 45:116–128

    Article  Google Scholar 

  • Hong DH, Choi CH (2000) Multicriteria fuzzy decision-making problems based on vague set thoery. Fuzzy Sets Syst 114:103–113

    Article  MATH  Google Scholar 

  • Liu BD (2012) Membership functions and operational law of uncertain sets. Fuzzy Optim Decis Mak 11:387–410

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2007) Intuitionistic fuzzy aggregation operations. IEEE Trans Fuzzy Syst 15:1179–1187

    Article  Google Scholar 

  • Xu ZS (2007) Intuitionistic preference relations and their application in group decision making. Inf Sci 177:2363–2379

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS (2010) Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl-Based Syst 24:772–782

    Google Scholar 

  • Xu ZS (2007) Models for multiple attribute decision making with intuitionistic fuzzy information. Int J Uncertain Fuzziness Knowl-Based Syst 15:285–297

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS, Da QL (2002) The ordered weighted geometric averaging operators. Int J Intell Syst 17:709–716

    Article  MATH  Google Scholar 

  • Xu ZS, Hu H (2010) Projection models for intuitionistic fuzzy multiple attribute decision making. Int J Inf Technol Decis Mak 9:267–280

    Article  MATH  Google Scholar 

  • Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Xu ZS, Yager RR (2010) Power-geometric operators and their use in group decision making. IEEE Trans Fuzzy Syst 18:94–105

    Article  Google Scholar 

  • Ye J (2010) Multi-criteria fuzzy decision-making method using entropy weights-based correlation coefficient of interval-valued intuitionistic fuzzy sets. Appl Math Model 34:3864–3870

    Article  MathSciNet  MATH  Google Scholar 

  • Yager RR (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 18:183–190

    Article  MATH  Google Scholar 

  • Yager RR (2001) The power average operator. IEEE Trans Syst Man Cybern-Part A Syst Hum 31:724–731

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy set. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang ZM (2013) Generalized Atanassov’s intuitionistic fuzzy power geometric operators and their application to multiple attribute group decision making. Inf Fusion 14:460–486

    Article  Google Scholar 

  • Zhang ZM (2013) Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making. Inf Sci 234:150–181

    Article  MathSciNet  MATH  Google Scholar 

  • Zhai JH, Xu HY, Li Y (2013) Fusion of extreme learning machine with fuzzy integral. Int J Uncertain Fuzziness Knowl-Based Syst 21:23–34

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou LG, Chen HY (2012) A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowl-Based Syst 26:216–224

    Article  Google Scholar 

  • Zhou LG, Chen HY, Liu JP (2012) Generalized power aggregation operators and their applications in group decision making. Comput Ind Eng 62:989–999

    Article  Google Scholar 

  • Zhao H, Xu ZS, Ni MF, Liu SS (2010) Generalized aggregation operators for intuitionistic fuzzy sets. Int J Intell Syst 25:1–30

    Article  MATH  Google Scholar 

  • Zhu B, Xu ZS, Xia MM (2012) Hesitant fuzzy geometric Bonferroni means. Inf Sci 205:72–85

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 71225006, 71371011, 71301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen He.

Additional information

Communicated by V. Loia.

Appendices

Appendix A

Proof

With the mathematical induction on n, we have

  1. (1)

    When \(n=1\), \({w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^1 {w_j ( {1+T(A_j )})} }=1\),

    $$\begin{aligned}&\mathrm{WIFPIA}(A_1 )=A_1 =\langle {u_{A_1 } ,v_{A_1 } } \rangle \nonumber \\&\quad =\langle {1-( {1-u_{A_1 } })^1,1-u_{A_1 } ^1-( {1-(u_{A_1 } +v_{A_1 } )})^1} \rangle . \end{aligned}$$

    Thus, Eq. (15) holds.

  2. (2)

    If Eq. (15) is established for \(n=k\), i.e.,

    $$\begin{aligned}&\mathrm{WIFPIA}(A_1 ,\ldots ,A_k )\nonumber \\&\quad =\left\langle {1-\prod \limits _{i=1}^k {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}} ,} \right. \\&\quad \quad \left. \prod \limits _{i=1}^k {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} / {\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}}\right. \nonumber \\&\quad \quad \left. -\prod \limits _{i=1}^k {( {1-(u_{A_i } +v_{A_i } )})^{{w_i ( {1+T( {A_i })})}/{\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}} \right\rangle \end{aligned}$$

    Then for \(n=k+\)1, by the improved addition operation, i.e., Eq. (5), we get

    $$\begin{aligned}&\mathrm{WIFPIA}(A_1 ,\ldots A_{k+1} )=\mathop {\hat{\oplus }}\limits _{i=1}^{k+1} w_i A_i=\mathrm{WIFPIA}(A_1 ,\ldots A_k )\\&\quad \hat{\oplus }\left( {w_{k+1} ( {1+T( {A_{k+1} })})A_{k+1} }/ {\sum \limits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }\right) \\&\quad =\left\langle 1-\prod \limits _{i=1}^k {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}},\right. \\&\quad \quad \left. \prod \limits _{i=1}^k {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}}\right. \\&\quad \quad \left. -\prod \limits _{i=1}^k {( {1-(u_{A_i } +v_{A_i } )})^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^k {w_j ( {1+T(A_j )})} }}} \right\rangle \\&\quad \quad \hat{\oplus }\left\langle 1-( {1-u_{A_{k+1} } })^{{w_{k+1} ( {1+T( {A_{k+1} })})} / {\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }},\right. \\&\quad \quad \left. ( {1-u_{A_{k+1} } })^{{w_{k+1} ( {1+T( {A_{k+1} })})} / {\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }}\right. \\&\quad \quad \left. -( {1-(u_{A_{k+1} } +v_{A_{k+1} } )})^{{w_{k+1} ( {1+T( {A_{k+1} })})} / {\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }} \right\rangle \\&\quad =\left\langle 1-\prod \limits _{i=1}^{k+1} {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }}},\right. \\&\quad \quad \left. \prod \limits _{i=1}^{k+1} {( {1-u_{A_i } })^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }}}\right. \\&\quad \quad \left. -\prod \limits _{i=1}^{k+1} {( {1-(u_{A_i } +v_{A_i } )})^{{w_i ( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {w_j ( {1+T(A_j )})} }}} \right\rangle . \end{aligned}$$

    Thus, Eq. (15) holds for \(n=k+\)1. Therefore, by using mathematic induction on n, Eq. (15) holds for n. Besides, according to Definition 1, we have \(\mathrm{WIFPIA}(A_1,\ldots ,A_n )\in \mathrm{IFNs}(X)\). Therefore, Theorem 1 holds. \(\square \)

Appendix B

Proof

By using mathematical induction on n, we prove Eq. (20) as follows:

  1. (1)

    When \(n=1\), \({( {1+T( {A_1 })})} / {( {\sum \nolimits _{j=1}^1 {1+T( {A_j })} })}=1\), we have

    $$\begin{aligned}&{\mathop {\hat{\oplus }}\limits _{i=1}^1 ( {1+T( {A_i })})A_i ^\lambda } /{\sum \limits _{j=1}^1 {( {1+T( {A_j })})} }\\&\quad =A_1^\lambda =\langle ( {1-v_{A_1 } })^\lambda \\&\qquad -( {1-( {u_{A_1 } +v_{A_1 } })})^\lambda ,1-( {1-v_{A_1 } })^\lambda \rangle \\&\quad =\langle 1-( {1-( {1-v_{A_1 } })^\lambda +( {1-( {u_{A_1 } +v_{A_1 } })})^\lambda })^1,\\&\quad \quad ( {1-( {1-v_{A_1 } })^\lambda +( {1-( {u_{A_1 } +v_{A_1 } })})^\lambda })^1\\&\qquad -( {1-( {u_{A_1 } +v_{A_1 } })})^{1\cdot \lambda } \rangle \\&\quad =\langle 1-( 1-( {1-v_{A_1 } })^\lambda \\&\qquad +( {1-( {u_{A_1 } +v_{A_1 } })})^\lambda )^{{( {1+T( {A_1 })})} / {( {\sum \nolimits _{j=1}^1 {1+T( {A_j })} })}},\\&\quad \quad ( 1-( {1-v_{A_1 } })^\lambda \\&\qquad +( {1-( {u_{A_1 } +v_{A_1 } })})^\lambda )^{{( {1+T( {A_1 })})} / {( {\sum \nolimits _{j=1}^1 {1+T( {A_j })} })}}\\&\quad \quad -( {1-( {u_{A_1 } +v_{A_1 } })})^{\lambda \cdot {\left( {1+T( {A_1 })}\right) } /{( {\sum \nolimits _{j=1}^1 {1+T( {A_j })} })}} \rangle \end{aligned}$$

    Thus, Eq. (20) is established for \(n=1\).

  2. (2)

    If Eq. (20) holds for \(n=k\). Then, \(n=k+1\), by inductive assumption and Eq. (5), we get

    $$\begin{aligned}&\frac{\mathop {\hat{\oplus }}\nolimits _{i=1}^{k+1} ( {1+T( {A_i })})A_i ^\lambda }{\sum \nolimits _{j=1}^{k+1} {( {1+T( {A_j })})} }\\&\quad =\left( {\frac{\mathop {\hat{\oplus }}\nolimits _{i=1}^k ( {1+T( {A_i })})A_i ^\lambda }{\sum \nolimits _{j=1}^{k+1} {( {1+T( {A_j })})} }}\right) \hat{\oplus }\frac{( {1+T( {A_{k+1} })})A_{k+1} ^\lambda }{\sum \nolimits _{j=1}^{k+1} {( {1+T( {A_j })})} }\\&\quad =\left\langle 1-\prod \limits _{i=1}^k ( 1-( {1-v_{A_i } })^\lambda \right. \\&\qquad +\,( {1-( {u_{A_i } +v_{A_i } })})^\lambda )^{{( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }},\\&\quad \quad \prod \limits _{i=1}^k ( 1-( {1-v_{A_i } })^\lambda \\&\qquad +\,( 1-( {u_{A_i } +v_{A_i } }))^\lambda )^{{( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }}\\&\quad \quad \left. -\,\prod \limits _{i=1}^k ( {1-( {u_{A_i } +v_{A_i } })})^{\lambda {( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }} \right\rangle \\&\quad \quad \hat{\oplus }\left\langle 1-( 1-( {1-v_{A_{k+1} } })^\lambda \right. \\&\qquad +\,( {1{-}( {u_{A_{k+1} } +v_{A_{k+1} } })})^\lambda )^{{( {1+T( {A_{k+1} })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }},\\&\quad \quad ( 1-( {1-v_{A_{k+1} } })^\lambda \\&\qquad +\,( {1-( {u_{A_{k+1} } +v_{A_{k+1} } })})^\lambda )^{{( {1+T( {A_{k+1} })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }}\\&\quad \quad \left. -\,( {1{-}( {u_{A_{k+1} } +v_{A_{k+1} } })})^{\lambda \cdot {( {1+T( {A_{k+1} })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }} \right\rangle \\&\quad =\left\langle 1-\prod \limits _{i=1}^{k+1} ( 1-( {1-v_{A_i } })^\lambda \right. \\&\qquad +\,( {1-( {u_{A_i } +v_{A_i } })})^\lambda )^{{( {1+T( {A_i })})}/{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }} ,\\&\quad \quad \prod \limits _{i=1}^{k+1} ( 1-( {1-v_{A_i } })^\lambda \\&\qquad +\,( {1-( {u_{A_i } +v_{A_i } })})^\lambda )^{{( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }}\\&\quad \quad \left. -\,\prod \limits _{i=1}^{k+1} {( {1-( {u_{A_i } +v_{A_i } })})^{\lambda {( {1+T( {A_i })})} /{\sum \nolimits _{j=1}^{k+1} {1+T( {A_j })} }}} \right\rangle \end{aligned}$$

    i.e. Eq. (20) is established for \(n=k+\)1.

Thus, Eq. (20) holds for all n with the mathematical induction on n. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., He, Z. & Huang, H. Decision making with the generalized intuitionistic fuzzy power interaction averaging operators. Soft Comput 21, 1129–1144 (2017). https://doi.org/10.1007/s00500-015-1843-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1843-x

Keywords

Navigation