Skip to main content
Log in

The minimum principle of hybrid optimal control theory

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The hybrid minimum principle (HMP) is established for the optimal control of deterministic hybrid systems with both autonomous and controlled switchings and jumps where state jumps at the switching instants are permitted to be accompanied by changes in the dimension of the state space and where the dynamics, the running and switching costs as well as the switching manifolds and the jump maps are permitted to be time varying. First-order variational analysis is performed via the needle variation methodology and the necessary optimality conditions are established in the form of the HMP. A feature of special interest in this work is the explicit presentations of boundary conditions on the Hamiltonians and the adjoint processes before and after switchings and jumps. Analytic and numerical examples are provided to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See, e.g., [64] for the definition of Lebesgue points. For any \({u \in L_{\infty }([t_i, t_{i+1} ], U)}\), u may be modified on a set of measure zero so that all points are Lebesgue points (see, e.g., [65]).

References

  1. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes, vol 4. Wiley Interscience, New York

    Google Scholar 

  2. Puri A, Varaiya P (1994) Verification of hybrid systems using abstractions. In: International Hybrid Systems Workshop. Springer, pp. 359–369

  3. Alur R, Henzinger TA, Lafferriere G, Pappas GJ (2000) Discrete abstractions of hybrid systems. Proc IEEE 88(7):971–984

    Article  Google Scholar 

  4. Alur R, Dang T, Ivančić F (2003) Progress on reachability analysis of hybrid systems using predicate abstraction. In: Proceedings of the 6th international workshop on hybrid systems: computation and control. HSCC, Prague, Czech Republic, p. 4–19

  5. Clarke E, Fehnker A, Han Z, Krogh B, Ouaknine J, Stursberg O et al (2003) Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int J Found Comput Sci 14(04):583–604

    Article  MathSciNet  Google Scholar 

  6. Tiwari A, Khanna G (2002) Series of abstractions for hybrid automata. In: Proceedings of the 5th international workshop on hybrid systems: computation and control. HSCC, Stanford, pp. 465–478

  7. Broucke M (1999) A geometric approach to bisimulation and verification of hybrid systems. In: Hybrid systems: computation and control. Springer, pp. 61–75

  8. Helwa MK, Caines PE (2017) In-block controllability of affine systems on polytopes. IEEE Trans Autom Control 62(6):2950–2957

    Article  MathSciNet  Google Scholar 

  9. Corona D, Giua A, Seatzu C (2004) Optimal control of hybrid automata: design of a semiactive suspension. Control Eng Pract 12(10):1305–1318 (Analysis and Design of Hybrid Systems)

    Article  Google Scholar 

  10. Goebel R, Sanfelice RG, Teel AR (2012) Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press, Princeton

    Book  Google Scholar 

  11. Liberzon D (2003) Switching in systems and control, vol 190. Birkhauser, Boston

  12. Liberzon D, Hespanha JP, Morse AS (1999) Stability of switched systems: a lie-algebraic condition. Syst Control Lett 37(3):117–122

    Article  MathSciNet  Google Scholar 

  13. Hespanha JP (2004) Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans Autom Control 49(4):470–482

    Article  MathSciNet  Google Scholar 

  14. Branicky MS (1998) Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Autom Control 43(4):475–482

    Article  MathSciNet  Google Scholar 

  15. Decarlo RA, Branicky MS, Pettersson S, Lennartson B (2000) Perspectives and results on the stability and stabilizability of hybrid systems. Proc IEEE 88(7):1069–1082

    Article  Google Scholar 

  16. Johansson M, Rantzer A (1998) Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans Autom Control 43(4):555–559

    Article  MathSciNet  Google Scholar 

  17. Van der Schaft AJ, Schumacher JM (2000) An introduction to hybrid dynamical systems. Lecture notes in control and information sciences, Vol. 251. Springer, London

  18. Bensoussan A, Menaldi JL (1997) Hybrid control and dynamic programming. Dyn Cont Discrete Impuls Syst Ser B Appl Algorithm 3(4):395–442

    MathSciNet  Google Scholar 

  19. Dharmatti S, Ramaswamy M (2005) Hybrid control systems and viscosity solutions. SIAM J Control Optim 44(4):1259–1288

    Article  MathSciNet  Google Scholar 

  20. Barles G, Dharmatti S, Ramaswamy M (2010) Unbounded viscosity solutions of hybrid control systems. ESAIM Control Optim Calc Var 16(1):176–193

    Article  MathSciNet  Google Scholar 

  21. Branicky MS, Borkar VS, Mitter SK (1998) A unified framework for hybrid control: model and optimal control theory. IEEE Trans Autom Control 43(1):31–45

    Article  MathSciNet  Google Scholar 

  22. Shaikh MS, Caines PE (2009) A verification theorem for hybrid optimal control problem. In: Proceedings of the IEEE 13th international multitopic conference, INMIC

  23. Caines PE, Egerstedt M, Malhamé R, Schöllig A (2007) A hybrid Bellman equation for bimodal systems. In: Proceedings of the 10th international conference on hybrid systems: computation and control, HSCC, vol. 4416, p. 656–659. LNCS

  24. Schöllig A, Caines PE, Egerstedt M, Malhamé R (2007) A hybrid Bellman equation for systems with regional dynamics. In: Proceedings of the 46th IEEE conference on decision and control, CDC. pp. 3393–3398

  25. Da Silva JE, De Sousa JB, Pereira FL (2012) Dynamic programming based feedback control for systems with switching costs. In: Proceedings of the IEEE international conference on control applications, CCA, pp. 634–639

  26. Hedlund S, Rantzer A (2002) Convex dynamic programming for hybrid systems. IEEE Trans Autom Control 47(9):1536–1540

    Article  MathSciNet  Google Scholar 

  27. Clarke FH, Vinter RB (1989) Applications of optimal multiprocesses. SIAM J Control Optim 27(5):1048–1071

    Article  MathSciNet  Google Scholar 

  28. Clarke FH, Vinter RB (1989) Optimal multiprocesses. SIAM J Control Optim 27(5):1072–1091

    Article  MathSciNet  Google Scholar 

  29. Sussmann HJ (1999) A nonsmooth hybrid maximum principle. In: Aeyels D, Lamnabhi-Lagarrigue F, van der Schaft A (eds) Stability and stabilization of nonlinear systems. London, Springer, pp 325–354

    Chapter  Google Scholar 

  30. Sussmann HJ (1999) Maximum principle for hybrid optimal control problems. In: Proceedings of the 38th IEEE conference on decision and control, CDC. pp. 425–430

  31. Caines PE, Clarke FH, Liu X, Vinter RB (2006) A maximum principle for hybrid optimal control problems with pathwise state constraints. In: Proceedings of the 45th IEEE conference on decision and control, pp. 4821–4825

  32. Shaikh MS, Caines PE (2007) On the hybrid optimal control problem: theory and algorithms. IEEE Trans Autom Control 52(9):1587–1603

    Article  MathSciNet  Google Scholar 

  33. Garavello M, Piccoli B (2005) Hybrid necessary principle. SIAM J Control Optim 43(5):1867–1887

    Article  MathSciNet  Google Scholar 

  34. Taringoo F, Caines PE (2013) On the optimal control of impulsive hybrid systems on Riemannian manifolds. SIAM J Control Optim 51(4):3127–3153

    Article  MathSciNet  Google Scholar 

  35. Pakniyat A, Caines PE (2017) On the relation between the minimum principle and dynamic programming for classical and hybrid control systems. IEEE Trans Autom Control 62(9):4347–4362

    Article  MathSciNet  Google Scholar 

  36. Jafarpour S, Lewis AD (2016) Locally convex topologies and control theory. Math Control Signals Syst 28(4):29

    Article  MathSciNet  Google Scholar 

  37. Shaikh MS, Caines PE (2005) Optimality zone algorithms for hybrid systems computation and control: from exponential to linear complexity. In: Proceedings of the 44th IEEE conference on decision and control, and the european control conference, CDC-ECC ’05. vol, 2005, pp. 1403–1408

  38. Taringoo F, Caines PE (2011) Gradient geodesic and Newton geodesic HMP algorithms for the optimization of hybrid systems. Annu Rev Control 35(2):187–198

    Article  Google Scholar 

  39. Axelsson H, Wardi Y, Egerstedt M, Verriest E (2008) Gradient descent approach to optimal mode scheduling in hybrid dynamical systems. J Optim Theory Appl 136(2):167–186

    Article  MathSciNet  Google Scholar 

  40. Boccadoro M, Wardi Y, Egerstedt M, Verriest E (2005) Optimal control of switching surfaces in hybrid dynamical systems. Discrete Event Dyn Syst 15(4):433–448

    Article  MathSciNet  Google Scholar 

  41. Gonzalez H, Vasudevan R, Kamgarpour M, Sastry SS, Bajcsy R, Tomlin CJ (2010) A descent algorithm for the optimal control of constrained nonlinear switched dynamical systems. In: Proceedings of the 13th ACM international conference on Hybrid systems: computation and control, ACM, pp. 51–60

  42. Zhao P, Mohan S, Vasudevan R (2019) Optimal control of polynomial hybrid systems via convex relaxations. IEEE Trans Autom Control 65(5):2062–2077

    Article  MathSciNet  Google Scholar 

  43. Zhu F, Antsaklis PJ (2015) Optimal control of hybrid switched systems: a brief survey. Discret Event Dyn Syst 25(3):345–364

    Article  MathSciNet  Google Scholar 

  44. Passenberg B, Leibold M, Stursberg O, Buss M (2011) The minimum principle for time-varying hybrid systems with state switching and jumps. In: Proceedings of the 50th IEEE conference on decision and control and european control conference, CDC-ECC. pp. 6723–6729

  45. Cowlagi RV (2017) Hierarchical trajectory optimization for a class of hybrid dynamical systems. Automatica 77:112–119

    Article  MathSciNet  Google Scholar 

  46. Mamakoukas G, MacIver MA, Murphey TD (2018) Feedback synthesis for underactuated systems using sequential second-order needle variations. Int J Robot Res 37(13–14):1826–1853

    Article  Google Scholar 

  47. Riedinger P, Kratz F (2003) An optimal control approach for hybrid systems. Eur J Control 9(5):449–458

    Article  Google Scholar 

  48. Xu X, Antsaklis PJ (2004) Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans Autom Control 49(1):2–16

    Article  MathSciNet  Google Scholar 

  49. Azhmyakov V, Boltyanski VG, Poznyak A (2008) Optimal control of impulsive hybrid systems. Nonlinear Anal Hybrid Syst 2(4):1089–1097

    Article  MathSciNet  Google Scholar 

  50. Dmitruk AV, Kaganovich AM (2008) The hybrid maximum principle is a consequence of Pontryagin maximum principle. Syst Control Lett 57(11):964–970

    Article  MathSciNet  Google Scholar 

  51. Dmitruk AV, Kaganovich AM (2011) Maximum principle for optimal control problems with intermediate constraints. Comput Math Model 22(2):180–215

    Article  MathSciNet  Google Scholar 

  52. Dmitruk AV, Kaganovich AM (2011) Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discr Contin Dyn Syst 29:523–545

    Article  MathSciNet  Google Scholar 

  53. Pakniyat A, Caines PE (2014) On the relation between the minimum principle and dynamic programming for hybrid systems. In: Proceedings of the 53rd IEEE conference on decision and control, CDC. pp. 19–24

  54. Pakniyat A, Caines PE (2013) The hybrid minimum principle in the presence of switching costs. In: Proceedings of the 52nd IEEE conference on decision and control, CDC. pp. 3831–3836

  55. Westervelt ER, Chevallereau C, Choi JH, Morris B, Grizzle JW (2007) Feedback control of dynamic bipedal robot locomotion. CRC Press, Boca Raton

    Google Scholar 

  56. Pakniyat A, Caines PE (2017) Hybrid optimal control of an electric vehicle with a dual-planetary transmission. Nonlinear Anal Hybrid Syst 25:263–282

    Article  MathSciNet  Google Scholar 

  57. Pakniyat A, Caines PE (2015) Time optimal hybrid minimum principle and the gear changing problem for electric vehicles. In: Proceedings of the 5th IFAC conference on analysis and design of hybrid systems. Atlanta, pp. 187–192

  58. Pakniyat A, Caines PE (2014) On the minimum principle and dynamic programming for hybrid systems. In: Proceedings of the 19th international federation of automatic control world congress, IFAC, p. 9629–9634

  59. Pakniyat A, Caines PE (2015) On the minimum principle and dynamic programming for hybrid systems with low dimensional switching manifolds. In: Proceedings of the 54th IEEE conference on decision and control, Japan. pp. 2567–2573

  60. Pakniyat A, Caines PE (2015) On the relation between the hybrid minimum principle and hybrid dynamic programming: a linear quadratic example. In: Proceedings of the 5th IFAC conference on analysis and design of hybrid systems. pp. 169–174

  61. Taringoo F, Caines PE (2010) Gradient-geodesic HMP algorithms for the optimization of hybrid systems based on the geometry of switching manifolds. In: Proceedings of the 49th IEEE conference on decision and control, CDC. pp. 1534–1539

  62. Pakniyat A, Caines PE (2016) On the stochastic minimum principle for hybrid systems. In: Proceedings of the 55th IEEE conference on decision and control. pp. 1139–1144

  63. Caines PE (2017) Lecture notes on nonlinear and hybrid control systems: dynamics, stabilization and optimal control. Department of Electrical and Computer Engineering (ECE), McGill University

  64. Agrachev AA, Sachkov Y (2013) Control theory from the geometric viewpoint, vol 87. Springer Science & Business Media, Berlin

    Google Scholar 

  65. Rudin W (1987) Real and complex analysis. McGraw-Hill, New York

    Google Scholar 

  66. Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems. texts in applied mathematics. Springer, New York

    Book  Google Scholar 

  67. Pakniyat A, Caines PE (2020) On the hybrid minimum principle: the Hamiltonian and adjoint boundary conditions. IEEE Trans Autom Control 66(3):1246–1253

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSERC (Canada) Grant RGPIN-2019-05336, the U.S. ARL and ARO Grant W911NF1910110, and the U.S. AFOSR Grant FA9550-19-1-0138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Pakniyat.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of Lemma 1

Appendix A Proof of Lemma 1

Proof

Let us define

$$\begin{aligned} K_1=\sup \left\{ \left\| f_{q}\left( t,x,u\right) \right\| :\left( t,q,x,u\right) \in [t_{0},t_{f}] \times Q\times B_{r}\times U\right\} , \end{aligned}$$
(A1)

where \(B_{r}:=\left\{ x \in {\mathbb {R}}^{n_{q}}: \left\| x\right\| ^2 <r^2\right\} \).

we first consider the stage where no remaining switching is available and hence \(t\in \left( t_L,t_{L+1}\right) = \left( t_L,t_{f}\right) \). In this the case that

$$\begin{aligned} x\left( t_{f};t,x_{t}\right) =x_{t}+\int _{t}^{t_{f}}f_{q_{L}}\left( \tau , x_{\tau },u_{\tau }\right) \textrm{d}\tau , \end{aligned}$$
(A2)

which gives

$$\begin{aligned} \left\| x\left( t_{f};t,x_{t}\right) -x_{t}\right\| \le K_{1}\left| t_{f}-t\right| +\int _{t}^{t_{f}}L_{f}\left\| x\left( \tau ;t,x_{t}\right) -x_{t}\right\| \textrm{d}\tau , \end{aligned}$$
(A3)

where \(L_{f}\) is defined in assumptions A0. By the Gronwall-Bellman inequality this results in

$$\begin{aligned} \left\| x\left( t_{f};t,x_{t}\right) -x_{t}\right\|\le & {} K_{1}\left| t_{f}-t\right| +\int _{t}^{t_{f}}L_{f}K_{1}\left( \tau -t\right) e^{L_{f}\left( t_{f}-\tau \right) }\textrm{d}\tau \nonumber \\\le & {} K_{2}\left| t_{f}-t\right| \le K_{2}\left| t_{f}-t_{L}\right| , \end{aligned}$$
(A4)

where \(K_{2}=\max \left\{ K_{1},L_{f}K_{1}\left( t_{f}-t_{L}\right) e^{L_{f}\left( t_{f}-t_{L}\right) }\right\} \). Hence, by the semi-group properties of ODE solutions and by use of (A4), for \(s \ge t\) and \(x_s \in N_{r_{x}}\left( x_t\right) \) we have

$$\begin{aligned} \left\| x\left( t_{f};t,x_{t}\right) -x\left( t_{f};s,x_{s}\right) \right\|\le & {} \left\| x_{t}-x_{s}\right\| +\left\| x\left( s;t,x_{t}\right) -x_{t}\right\| \nonumber \\{} & {} +\int _{s}^{t_{f}}L_{f}\left\| x\left( \tau ;t,x_{t}\right) -x\left( \tau ;s,x_{s}\right) \right\| \textrm{d}\tau \nonumber \\\le & {} \left\| x_{t}-x_{s}\right\| +K_{2}\left| s-t\right| \nonumber \\{} & {} +\int _{s}^{t_{f}}L_{f}\left\| x\left( \tau ;t,x_{t}\right) -x\left( \tau ;s,x_{s}\right) \right\| \textrm{d}\tau , \end{aligned}$$
(A5)

and therefore, by the Gronwall inequality we have

$$\begin{aligned} \left\| x\left( t_{f};t,x_{t}\right) -x\left( t_{f};s,x_{s}\right) \right\|\le & {} \left( \left\| x_{t}-x_{s}\right\| +K_{2}\left| s-t\right| \right) e^{L_{f}\left( t_{f}-s\right) } \nonumber \\\le & {} \left( \left\| x_{t}-x_{s}\right\| +K_{2}\left| s-t\right| \right) e^{L_{f}\left( t_{f}-t_{L}\right) }\nonumber \\\le & {} K\left( \left\| x_{t}-x_{s}\right\| ^{2}+\left| s-t\right| ^{2}\right) ^{\frac{1}{2}}, \end{aligned}$$
(A6)

for some \(K<\infty \) which depends only on \(t_f - t_L\), \(K_1\) and \({\tilde{K}}_f\) and not on the control input.

Now consider \(t,s\in \left( t_j,t_{j+1}\right) \) where \(t_{j+1}\) indicates a time of an autonomous switching for the trajectory \(x\left( \tau ;t,x_{t}\right) \), and consider for definiteness the case where \(x\left( \tau ;s,x_{s}\right) \) arrives on the switching manifold described locally by \(m\left( x\right) = 0\) at a later time \(t_{j+1}+\delta t\) (the case with an earlier arrival time can be handled similarly by considering \(\delta t<0\)). It directly follows by replacing \(f_{q_L}\) and \(t_{f}\) by \(f_{q_j}\) and \(t_{j+1}-\) in the above arguments, that

$$\begin{aligned} \left\| x\left( t_{j+1}-;t,x_{t}\right) -x\left( t_{j+1}-;s,x_{s}\right) \right\| \le K^{\prime }\left( \left\| x_{t}-x_{s}\right\| ^{2}+\left| s-t\right| ^{2}\right) ^{\frac{1}{2}}. \end{aligned}$$
(A7)

Now since

$$\begin{aligned} \left\| x\left( t_{j+1}+\delta t-;s,x_{s}\right) -x\left( t_{j+1}-;s,x_{s}\right) \right\| \le K_2 \left| t_{j+1}+\delta t - t_{j+1}\right| = K_2 \left| \delta t\right| ,\nonumber \\ \end{aligned}$$
(A8)

and

$$\begin{aligned}{} & {} \left\| x\left( t_{j+1}+\delta t-;s,x_{s}\right) -x\left( t_{j+1}-;t,x_{t}\right) \right\| ^2\nonumber \\{} & {} \le \left\| x\left( t_{j+1}+\delta t-;s,x_{s}\right) -x\left( t_{j+1}-;s,x_{s}\right) \right\| ^2 \nonumber \\{} & {} \quad + \left\| x\left( t_{j+1}-;t,x_{t}\right) -x\left( t_{j+1}-;s,x_{s}\right) \right\| ^2, \end{aligned}$$
(A9)

it is sufficient to show that the upper bound for \(\left| \delta t\right| \) is proportional to \(\big (\left\| x_{t}-x_{s}\right\| ^{2}+\left| s-t\right| ^{2}\big )^{\frac{1}{2}}\). This can be shown to hold by considering the fact that

$$\begin{aligned}{} & {} m\big (x(t_{j+1}+\delta t-;s,x_{s})\big ) =m\bigg (x(t_{j+1}-;s,x_{s})+\int _{t_{j}}^{t_{j}+\delta t}f_{q_{j}}\big (x(\tau ;s,x_{s}),u_{t_{j}-}\big )\textrm{d}\tau \bigg ) \nonumber \\{} & {} \quad =m\left( x(t_{j+1}-;t,x_{t})+\delta x(t_{j+1}-)+\int _{t_{j}}^{t_{j}+\delta t} f_{q_{j}}{\big (x(\tau ;s,x_{s}),u_{t_{j}-}\big )} \textrm{d}\tau \right) \nonumber \\{} & {} \quad =m\left( x\left( t_{j+1}-;t,x_{t}\right) \right) =0. \end{aligned}$$
(A10)

For \(\left\| \delta x\left( t_{j+1}-\right) \right\| < \epsilon _{j+1}\) sufficiently small,

$$\begin{aligned} \nabla m^{\top }\left( \delta x_{t_{j+1}-}+\int _{t_{j}}^{t_{j}+\delta t}f_{q_{j}}{\left( x\left( \tau ;s,x_{s}\right) ,u_{t_{j}-}\right) }\textrm{d}\tau \right) +O\left( \epsilon _{j+1}^{2}\right) =0, \end{aligned}$$
(A11)

which is equivalent to

$$\begin{aligned} \nabla m^{\top }\delta x\left( t_{j+1}-\right) +\int _{t_{j}}^{t_{j}+\delta t}\nabla m^{\top }f_{q_{j}}{\left( x\left( \tau ;s,x_{s}\right) ,u_{t_{j}-}\right) }\textrm{d}\tau +O\left( \epsilon _{j+1}^{2}\right) =0.\nonumber \\ \end{aligned}$$
(A12)

Due to the transversal arrival of the trajectories with respect to the smooth switching manifold, \(\left| \nabla m^{\top } f_{q_j}\right| \) is lower bounded by a strictly positive number \(k_{m,f}\) (see (2)) and hence,

$$\begin{aligned}{} & {} \left| \nabla m^{\top }\delta x\left( t_{j+1}-\right) +O\left( \epsilon _{j+1}^{2}\right) \right| =\left| \int _{t_{j}}^{t_{j}+\delta t}\nabla m^{\top }f_{q_{j}}{\left( x\left( \tau ;s,x_{s}\right) ,u_{t_{j}-}\right) }\textrm{d}\tau \right| \nonumber \\{} & {} \quad \ge \int _{t_{j}}^{t_{j}+\delta t}\left| \nabla m^{\top }f_{q_{j}}{\left( x\left( \tau ;s,x_{s}\right) ,u_{t_{j}-}\right) }\right| \textrm{d}\tau \ge k_{m,f}\left| \delta t\right| , \end{aligned}$$
(A13)

which gives

$$\begin{aligned}{} & {} \left| \delta t\right| \le \frac{1}{k_{m,f}}\left( \left\| \nabla m\right\| \left\| \delta x\left( t_{j+1}-\right) \right\| +\left| O\left( \epsilon _{j+1}^{2}\right) \right| \right) \nonumber \\{} & {} \quad \le \frac{1}{k_{m,f}}\left\| \nabla m\right\| \epsilon _{j+1}+\epsilon _{j+1} \le \left( \frac{\left\| \nabla m\right\| }{k_{m,f}} +1\right) \epsilon _{j+1}=K_{j+1}\epsilon _{j+1}. \end{aligned}$$
(A14)

Hence, for \(t\in \left( t_j,t_{j+1}\right) \) and \(x_t\in B_r\) there exist a neighborhood \(N_{r_x}\left( x_t\right) \) such that for \(s\in \left( t_j,t_{j+1}\right) \) and \(x_s \in \mathcal{N}_{r_x}\left( x_t\right) \) we have \(\left\| \delta x\left( t_{j+1}-\right) \right\| \le K^{\prime }\left( \left\| x_{t}-x_{s}\right\| ^{2}+\left| s-t\right| ^{2}\right) ^{\frac{1}{2}} < \epsilon _{j+1}\) in order to ensure that \(\delta t \le K_{j+1} \epsilon _{j+1}\) and consequently

$$\begin{aligned} \left\| x\left( t_{j+1}+\delta t-;s,x_{s}\right) -x\left( t_{j+1}-;t,x_{t}\right) \right\| \le K\left( \left\| x_{t}-x_{s}\right\| ^{2}+\left| s- t\right| ^{2}\right) ^{\frac{1}{2}},\nonumber \\ \end{aligned}$$
(A15)

for K independent of the control. Since \(\xi \) is smooth and time invariant, it is therefore Lipschitz in x uniformly in time. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakniyat, A., Caines, P.E. The minimum principle of hybrid optimal control theory. Math. Control Signals Syst. 36, 21–70 (2024). https://doi.org/10.1007/s00498-023-00374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00374-1

Keywords

Navigation