Skip to main content
Log in

Transcriptomics of Arabidopsis sperm cells at single-cell resolution

  • Methods Paper
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Key message

We present a detailed protocol for isolation of single sperm cells and transcriptome analysis to study variation in gene expression between sperm cells.

Abstract

Male gametophyte development in flowering plants begins with a microspore mother cell, which upon two consecutive cell divisions forms a mature pollen grain containing a vegetative nucleus and two sperm cells. Pollen development is a highly dynamic process, involving changes at both the transcriptome and epigenome levels of vegetative nuclei and the pair of sperm cells that have their own cytoplasm and nucleus. While the overall transcriptome of Arabidopsis pollen development is well documented, studies at single-cell level, in particular of sperm cells, are still lacking. Such studies would be essential to understand whether and how the two sperm cells are transcriptionally different, in particular once the pollen tube grows through the transmitting tissue of the pistil. Here we describe a detailed protocol for isolation of single sperm cells from growing pollen tubes and analysis of their transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  PubMed  CAS  Google Scholar 

  • Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V (2013) Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. Plant J 76:729–741

    Article  PubMed  CAS  Google Scholar 

  • Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T, Kelsey G (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R (2015) Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 10:e0128036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker JD, Takeda S, Borges F, Dolan L, Feijó JA (2014) Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC Plant Biol 14:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger F, Twell D (2011) Germline specification and function in plants. Ann Rev Plant Biol 62:461–484

    Article  CAS  Google Scholar 

  • Boavida LC, McCormick S (2007) Technical Advance: temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  PubMed  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD (2012) FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen GH, Hu ZM, Guo FL, Guan XL (1995) Male gametophyte development in Plumbago zeylanica: cytoplasm localization and cell determination in 708 the early generative cell. Protoplasma 186:79–86

    Article  Google Scholar 

  • Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804

    Article  PubMed  CAS  Google Scholar 

  • Chumak N, Mosiolek M, Schoft VK (2015) Sample preparation and fractionation of Arabidopsis thaliana sperm and vegetative cell nuclei by FACS. Bio-protocol 5:e1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupl’áková N, Dobrev PI, Reňák D, Honys D (2016) Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient. Nat Protoc 11:1817

    Article  PubMed  CAS  Google Scholar 

  • Efroni I, Birnbaum KD (2016) The potential of single-cell profiling in plants. Genome Biol 17:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel ML, Chaboud A, Dumas C, McCormick S (2003) Sperm cells of Zea mays have a complex complement of mRNAs. Plant J 34:697–707

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    PubMed  CAS  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175

    Article  PubMed  CAS  Google Scholar 

  • Gou X, Yuan T, Wei X, Russell SD (2009) Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. Plant J 60:33–47

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin X, Wang RS, Zhu M, Jeon BW, Albert R, Chen S, Assmann SM (2013) Abscisic acid–responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. Plant Cell 25:4789–4811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA (2017) The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-Sequencing. Plant Cell 29:984–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G (2010) Root hair systems biology. Trends Plant Sci 15:641–650

    Article  PubMed  CAS  Google Scholar 

  • Libault M, Pingault L, Zogli P, Schiefelbein J (2017) Plant systems biology at the single-cell level. Trends Plant Sci 22:949–960

    Article  PubMed  CAS  Google Scholar 

  • Lin S-Y, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY (2014) Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Lu Y, Wei L, Yu H, Cao Y, Li Y, Yang N, Song Y, Liang C, Wang T (2018) Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development. Plant J 96:421–437

    Article  PubMed  CAS  Google Scholar 

  • Macaulay IC, Teng MJ, Haerty W, Kumar P, Ponting CP, Voet T (2016) Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq. Nat Protoc 11:2081–2103

    Article  PubMed  CAS  Google Scholar 

  • Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mantsoki A, Devailly G, Joshi A (2016) Gene expression variability in mammalian embryonic stem cells using single cell RNA-seq data. Comput Biol Chem 63:52–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marks MD, Betancur L, Gilding E, Chen F, Bauer S, Wenger JP, Dixon RA, Haigler CH (2008) A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant J 56:483–492

    Article  PubMed  CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • Mogensen HL (1992) The male germ unit: concept, composition, and significance. Int Rev Cytol 140:129–147

    Article  Google Scholar 

  • Okonechnikov K, Conesa A, García-Alcalde F (2015) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294

    PubMed  PubMed Central  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611–1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao Z, Libault M (2013) Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. Front Plant Sci 4:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago: ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82:6129–6132

    Article  PubMed  CAS  Google Scholar 

  • Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito C, Nagata N, Sakai A, Mori K, Kuroiwa H, Kuroiwa T (2002) Angiosperm species that produce sperm cell pairs or generative cells with polarized distribution of DNA-containing organelles. Sex Plant Reprod 15:167–178

    Article  CAS  Google Scholar 

  • Santos MR, Bispo C, Becker JD (2017) Isolation of arabidopsis pollen, sperm cells, and vegetative nuclei by fluorescence-activated cell sorting (FACS). In: Schmidt A (ed) Plant germline development. Humana Press, New York, pp 193–210

    Chapter  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160

    Article  PubMed  Google Scholar 

  • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Ye Z (2013) Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci 70:1937–1948

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, Guo X, Lin Q, Gu H, Dong J, Dresselhaus T, Qu LJ (2017) Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat Plants 3:17079

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Genomics Unit and Bioinformatics Unit of IGC. The Genomics Unit was partially supported by ONEIDA Project (LISBOA-01-0145-FEDER-016417) co-funded by FEEI—”Fundos Europeus Estruturais e de Investimento” from “Programa Operacional Regional Lisboa 2020″ and by national funds from FCT—”Fundação para a Ciência e a Tecnologia”. This work was funded by FCT ERA-CAPS project EVOREPRO (ERA-CAPS-0001-2014). CSM acknowledges a doctoral fellowship from FCT (PD/BD/114362/2016) under the Plants for Life PhD Program. JDB received salary support from FCT through an “Investigador FCT” position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg D. Becker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Thomas Dresselhaus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A contribution to the special issue ‘Cellular Omics Methods in Plant Reproduction Research’.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, C.S., Santos, M.R., Rafael-Fernandes, M. et al. Transcriptomics of Arabidopsis sperm cells at single-cell resolution. Plant Reprod 32, 29–38 (2019). https://doi.org/10.1007/s00497-018-00355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-018-00355-4

Keywords

Navigation