Skip to main content
Log in

A Unifying Framework for the \(\nu \)-Tamari Lattice and Principal Order Ideals in Young’s Lattice

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We present a unifying framework in which both the \(\nu \)-Tamari lattice, introduced by Préville-Ratelle and Viennot, and principal order ideals in Young’s lattice indexed by lattice paths \(\nu \), are realized as the dual graphs of two combinatorially striking triangulations of a family of flow polytopes which we call the \(\nu \)-caracol flow polytopes. The first triangulation gives a new geometric realization of the \(\nu \)-Tamari complex introduced by Ceballos et al. We use the second triangulation to show that the \(h^*\)-vector of the \(\nu \)-caracol flow polytope is given by the \(\nu \)-Narayana numbers, extending a result of Mészáros when \(\nu \) is a staircase lattice path. Our work generalizes and unifies results on the dual structure of two subdivisions of a polytope studied by Pitman and Stanley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baldoni, W., Vergne, M.: Kostant partitions functions and flow polytopes. Transform. Groups 13(3), 447–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mészáros, K., Morales, A.H.: Volumes and Ehrhart polynomials of flow polytopes. Math. Z. 293(4), 1369–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetti, C., et al.: A combinatorial model for computing volumes of flow polytopes. Trans. Am. Math. Soc. 372(5), 3369–3404 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mészáros, K., Morales, A.H., Striker, J.: On flow polytopes, order polytopes and certain faces of the alternating sign matrix polytope. Discrete Comput. Geom. 62(1), 128–163 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Danilov, V. I., Karzanov, A. V., Koshevoy, G. A.: Coherent fans in the space of flows in framed graphs. In: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012). Discrete Mathematics and Theoretical Computer Science. pp. 481–490 (2012)

  6. Préville-Ratelle, L., Viennot, X.: The enumeration of generalized Tamari intervals. Trans. Am. Math. Soc. 369(7), 5219–5239 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Armstrong, D., Loehr, N.A., Warrington, G.S.: Rational parking functions and Catalan numbers. Ann. Comb. 20(1), 21–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Armstrong, D., Rhoades, B., Williams, N.: Rational associahedra and noncrossing partitions. Electron. J. Combin. 20(3), 51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ceballos, C., González D’León, R.S.: Signature Catalan combinatorics. J. Comb. 10(4), 725–773 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Ceballos, C., Padrol, A., Sarmiento, C.: Geometry of \(\nu \)-Tamari lattices in types A and B. Trans. Am. Math. Soc. 371(4), 2575–2622 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ceballos, C., Padrol, A., Sarmiento, C.: The \(\nu \)-Tamari lattice via \(\nu \)-trees, \(\nu \)-bracket vectors. and subword complexes. Electron. J. Comb. 27, 18–62 (2020)

    MathSciNet  MATH  Google Scholar 

  12. von Bell, M., Yip, M.: Schröder combinatorics and \(\nu \)-associahedra. Eur. J. Combinatorics 98, 103415 (2021)

    Article  MATH  Google Scholar 

  13. Pitman, J., Stanley, R.P.: A polytope related to empirical distributions, plane trees. parking functions, and the Associahedron. Discrete Comput. Geom. 27(4), 603–634 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mèszáros, K.: Pipe dream complexes and triangulations of root polytopes belong together. SIAM J. Discrete Math. 30(1), 100–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yip, M.: A Fuss-Catalan variation of the caracol flow polytope. arXiv: 1910.10060

  17. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ehrhart, E.: Sur les polyèdres rationnels homothètiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  19. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math . 6(6), 333–342 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts in Mathematics, Springer, New York (2007)

    MATH  Google Scholar 

  21. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The second and fourth authors are extremely grateful to AIM and the SQuaRE group “Computing volumes and lattice points of flow polytopes” as some of the ideas of this work came from discussions within the group. In particular, we want to thank Alejandro Morales for the many enlightening discussions and explanations on triangulations of flow polytopes. Martha Yip is partially supported by Simons Collaboration Grant 429920. Rafael S. González D’León is very grateful with Universidad Sergio Arboleda and Pontificia Universidad Javeriana since part of this work happened under their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael S. González D’León.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Bell, M., González D’León, R.S., Mayorga Cetina, F.A. et al. A Unifying Framework for the \(\nu \)-Tamari Lattice and Principal Order Ideals in Young’s Lattice. Combinatorica 43, 479–504 (2023). https://doi.org/10.1007/s00493-023-00022-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00022-x

Keywords

Mathematics Subject Classification

Navigation