Skip to main content
Log in

Dual Ramsey Theorem for Trees

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The classical Ramsey theorem was generalized in two major ways: to the dual Ramsey theorem, by Graham and Rothschild, and to Ramsey theorems for trees, initially by Deuber and Leeb. Bringing these two lines of thought together, we prove the dual Ramsey theorem for trees. Galois connections between partial orders are used in formulating this theorem, while the abstract approach to Ramsey theory, we developed earlier, is used in its proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartošová, D., Kwiatkowska, A.: Lelek fan from a projective Fraissé limit. Fundam. Math. 231, 57–79 (2015)

    Article  MATH  Google Scholar 

  2. Deuber, W.: A generalization of Ramsey’s theorem for regular trees. J. Comb. Theory B 18, 18–23 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Droste, M., Göbel, R.: Universal domains and the amalgamation property. Math. Struct. Comput. Sci. 3, 137–159 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fouché, W.L.: Symmetries and Ramsey properties of trees. Discrete Math. 197(198), 325–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

  6. Graham, R.L., Rothschild, B.L.: Ramsey’s theorem for \(n\)-parameter sets. Trans. Am. Math. Soc. 159, 257–292 (1971)

    MathSciNet  MATH  Google Scholar 

  7. Graham, R.L., Rothschild, B.L.: Some recent developments in Ramsey theory. In: Combinatorics, pp. 261–276. Mathematical Centre, Amsterdam (1975)

  8. Jasiński, J.: Ramsey degrees of boron tree structures. Combinatorica 33, 23–44 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15, 106–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kubiś, W.: Fraïssé sequences: category-theoretic approach to universal homogeneous structures. Ann. Pure Appl. Logic 165, 1755–1811 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milliken, K.: A Ramsey theorem for tress. J. Comb. Theory A 26, 137–148 (1979)

    Article  Google Scholar 

  12. Moore, J.T.: Amenability and Ramsey theory. Fundam. Math. 220, 263–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nešetřil, J.: Ramsey theory. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1331–1403. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  14. Nguyen Van Thé, L.: A survey on structural Ramsey theory and topological dynamics with the Kechris–Pestov–Todorcevic correspondence in mind. In: Selected Topics in Combinatorial Analysis, Zbornik Radova, vol. 17(25), pp. 189–207. Mathematical Institute of the Serbian Academy of Arts and Sciences (2015)

  15. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  16. Prömel, H.J., Voigt, B.: Hereditary attributes of surjections and parameter sets. Eur. J. Comb. 7, 161–170 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sokić, M.: Bounds on trees. Discrete Math. 311, 398–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Solecki, S.: Direct Ramsey theorem for structures involving relations and functions. J. Comb. Theory A 119, 440–449 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Solecki, S.: Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem. Adv. Math. 248, 1156–1198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Solecki, S.: Abstract approach to Ramsey theory and Ramsey theorems for finite trees. In: Asymptotic Geometric Analysis, Fields Institute Communications, pp. 313–340. Springer, Berlin (2013)

  21. Solecki, S.: Recent developments in Ramsey theory: foundational aspects and connections with dynamics. In: Proceedings of ICM, Seoul (2014)

  22. Todorcevic, S., Tyros, K.: A disjoint unions theorem for trees. Adv. Math. 285, 1487–1510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Miodrag Sokić and Anush Tserunyan for their remarks. I am also grateful to a referee for a careful reading of the paper and for suggestions that improved its presentation. Research supported by NSF Grants DMS-1266189, 1800680, and 1954069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Solecki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solecki, S. Dual Ramsey Theorem for Trees. Combinatorica 43, 91–128 (2023). https://doi.org/10.1007/s00493-023-00009-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00009-8

Keywords

Mathematics Subject Classification

Navigation