Skip to main content

Advertisement

Log in

Process-based dynamic identification indicators of soybean chilling damage and analysis of the corresponding spatiotemporal characteristics in Northeast China

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Northeast China (NEC) is one of the main soybean-producing areas among the northern-latitude regions. Climate warming leads to frequent extreme disasters, and the threat of chilling damage to soybean production in NEC cannot be ignored. The study aimed to construct a dynamic disaster identification index based on the static evaluation of soybean after the disaster, taking into account the process of soybean chilling damage and using the historical disaster records to realize the dynamic prediction and analysis before the disaster. Taking soybean in NEC as the research object, chilling damage indicators of soybeans in NEC were constructed by dividing the mature regions, using daily temperature anomaly and negative temperature anomaly day data with the comprehensive consideration of the chilling damage intensity, duration, and temperature recovery. The results showed that the comprehensive indicators determined by the cumulative value of temperature anomaly—the cumulative days of negative temperature anomaly had better applicability in NEC than the single factor indicator. The indicator results were basically consistent with the historical disaster records, and the accuracy rate of the indicator verification reached 90.9%. Based on the analysis of the constructed indicators, the frequency of delayed chilling damage in NEC showed a fluctuating downward trend from 1961 to 2020. The station ratio of delayed chilling damage in NEC showed a fluctuating downward trend, with the most obvious downward trend occurring for severe damage, followed by moderate damage, and the least obvious trend observed for light damage. The scope of chilling damage gradually narrowed, with the frequency increasing from southeast to northwest. The high-risk areas of chilling damage were concentrated mainly in the northern part of Heilongjiang Province and the East Four Leagues. The risk of chilling damage in most areas of Jilin Province and Liaoning Province was relatively low. The study results provide basic support for the risk research of soybean chilling damage and for ensuring disaster monitoring and early warnings, and the risk assessment based on the chilling damage process has positive significance for adjusting agricultural structure and improving the distribution of soybean varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The authors would like to extend their thanks and appreciation to the staff at the College of Agronomy, Shenyang Agricultural University for assisting in all research.

Funding

This research was funded by the National Key Research and Development Program of China (2019YFD1002204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xining Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Hainan Li and Liwei Wang contributed equally to this work and should be considered common first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, L., Gao, X. et al. Process-based dynamic identification indicators of soybean chilling damage and analysis of the corresponding spatiotemporal characteristics in Northeast China. Int J Biometeorol 67, 1155–1167 (2023). https://doi.org/10.1007/s00484-023-02485-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-023-02485-5

Keywords

Navigation