Skip to main content

Advertisement

Log in

Protective role of Portuguese natural mineral waters on skin aging: in vitro evaluation of anti-senescence and anti-oxidant properties

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Natural mineral waters (NMWs) emerge from the earth as springs and their beneficial therapeutic effect has been empirically recognized in different countries. Portugal has diverse NMW resources that are sought for the relief of different afflictions including dermatological complications. However, there is a lack of scientific validation supporting this empiric knowledge. In this study, we aimed to screen the in vitro bioactivity of Portuguese NMWs with different chemical profiles, namely sulfurous/bicarbonate/sodic (SBS), bicarbonate/magnesium, sulfated/calcic, sulfurous/chlorinated/sodic, sulfurous/bicarbonate/fluoridated/sodic, and chlorinated/sodic, focusing on aging-related skin alterations. Mouse skin fibroblasts and macrophages were exposed to culture medium prepared in different NMWs. Cellular viability was evaluated by MTT assay and etoposide-induced senescence was analyzed through the beta-galactosidase staining kit. Wound healing was investigated by the scratch assay, and phototoxicity/photoprotection after UVA irradiation was evaluated using a neutral red solution. ROS production was quantified using the 2′7′-dichlorofluorescin diacetate dye, and the activity of superoxide dismutase (SOD) was analyzed by a commercial kit after lipopolysaccharide exposure. NMWs within the SBS profile demonstrated anti-senescence activity in skin fibroblasts, along with a variable effect on cellular viability. Among the tested NMWs, two decreased cellular senescence and preserved cell viability and were therefore selected for subsequent studies, together with a SBS NMW with therapeutic indications for dermatologic diseases. Overall, the selected NMW promoted wound healing in skin fibroblasts and activated SOD in macrophages, thus suggesting an anti-oxidant effect. None of the NMWs prevented phototoxicity after UV irradiation. Our results shed a light on the anti-aging potential of Portuguese NMW, supporting their putative application in cosmetic or medical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to acknowledge the thermal centers involved in the project and the financial support provided by FEDER funds through the POCI–COMPETE 2020–Operational Programme Competitiveness and Internationalization in Axis I–Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491) and Provere Termas Centro–Projeto Âncora de Inovação, co-funded by Centro 2020, Portugal 2020, and European Union. This work was also developed within the scope of the CICS-UBI Projects UIDB/00709/2020 and UIDP/00709/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Palmeira-de-Oliveira.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, C., Oliveira, A., Silva, A. et al. Protective role of Portuguese natural mineral waters on skin aging: in vitro evaluation of anti-senescence and anti-oxidant properties. Int J Biometeorol 66, 2117–2131 (2022). https://doi.org/10.1007/s00484-022-02345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02345-8

Keywords

Navigation