Skip to main content

Advertisement

Log in

Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation–atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainsworth E, Long S (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Ainsworth E, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. doi:10.1111/j.1365-3040.2007.01641.x

    Article  CAS  Google Scholar 

  • Arneth A et al (2012) Future challenges of representing land-processes in studies on land-atmosphere interactions. Biogeosciences 9:3587–3599. doi:10.5194/bg-9-3587-2012

    Article  Google Scholar 

  • Arora VK (2002) Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev Geophys 40:3-1–3-26

    Article  Google Scholar 

  • Arora VK (2003) Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric For Meteorol 118:21–47

    Article  Google Scholar 

  • Arora VK, Boer GJ (2006) Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interact 10(10):1

    Article  Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Chang Biol16:3327–3348.CTEM – Available: http://www.cccma.ec.gc.ca/ctem/competition/ Accessed in Dec 27 2014

  • Atkin OK and Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. TRENDS Plant Sci 8 no. 7

  • Atkin OK et al (2008) Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Glob Chang Biol 14:2709–2726. doi:10.1111/j.1365-2486.2008.01664.x

    Google Scholar 

  • Bachelet D et al. (2001) MC1: A dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water technical documentation. Version 1.0.United States Department of Agriculture Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR-508 June 2001

  • Baker IT (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113:G00B01. doi:10.1029/2007JG000644

    Article  Google Scholar 

  • Ball JT (1987) A model predicting stomatal conductance and its to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in photosynthesis. Martinus Nijhoff Publishers, the Netherlands, pp 221–224

    Chapter  Google Scholar 

  • Beerling DJ, Royer DL (2002) Fossil plants as indicators of the phanerozoic global carbon Cycle. Annu Rev Earth Planet Sci 30:527–556

    Article  CAS  Google Scholar 

  • Belinda EM et al. (2015) Using ecosystem experiments to improve vegetation models. Nat Clim Change 5. doi: 10.1038

  • Berry JA et al (2010) Stomata: key players in the earth system, past and present. Plant Biol. doi:10.1016/j.pbi.2010.04.013

    Google Scholar 

  • Best MJ et al (2011) The Joint UK Land Environment Simulator (JULES), modeldescription—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Article  Google Scholar 

  • Bonan GB et al (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16(2):1021. doi:10.1029/2000GB001360

    Article  Google Scholar 

  • Bonan GB et al (2011) Improving canopyprocesses in the Community Land Model version 4(CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014. doi:10.1029/2010JG001593

    Article  Google Scholar 

  • Bonan GB et al (2012) Reconciling leaf physiological traits and canopy flux data use of the TRY and FLUXNET databases in the Community Land Model version 4. J Geophys Res 117(25C):1–19. doi:10.1029/2011JG001913

    Google Scholar 

  • Box EO (1981) Macroclimate and Plant fornzs: Aii introduction to predictive modeling in phytogeography. Tasks Veget Sci. vol. 1. Junk. The Hague

  • Box EO (1996) Plant functional types and climate at the global scale. J Veg Sci 7:309–320

    Article  Google Scholar 

  • Brovkin V et al (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Model 101:251–261

    Article  Google Scholar 

  • Clark DB et al (2011) The Joint UK Land Environment Simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Mod Dev 4:701–722. doi:10.5194/gmd-4-701-201

    Article  Google Scholar 

  • Collatz GJ et al (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • Collatz GJ et al (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Article  Google Scholar 

  • Cox PM (2001) Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre Technical Note 24

  • Cox PM et al (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212–213(1998):79–94

    Article  Google Scholar 

  • Denning AS (1996) Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes. Tellus Ser B 48:521–542

    Article  Google Scholar 

  • Dickinson RE (1984) Modeling evapotranspiration for Three-Dimensional Global Climate models, in Hansen JE and Takahashi, Climate processes and climate sensitivity: Geophysical Monograph, 29. American Geophysical Union, 58

  • Dietze MC (2014) Gaps in knowledge and data driving uncertainty in models of photosynthesis. Photosynth Res 119:3–14. doi:10.1007/s11120-013-9836-z

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD et al (1980) A biochemical model of phtosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fisher R et al (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187:666–681. doi:10.1111/j.1469-8137.2010.03340.x

    Article  Google Scholar 

  • Fisher JB et al (2014) Modeling the terrestrial biosphere. Annu Rev Environ Resour 39:15.1–15.33

    Article  Google Scholar 

  • Foley JA et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10(4):603–628

    Article  CAS  Google Scholar 

  • Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61(5):1293–1309. doi:10.1093/jxb/erq019

    Article  CAS  Google Scholar 

  • Gerten D et al (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    Article  CAS  Google Scholar 

  • Haxeltine A and Prentice IC (1996a) A general model for the Light-use efficiency of primary production. Funct Ecol, 10, (5)

  • Haxeltine A, Prentice IC (1996b) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiologicalconstraints, resource availability, and competition among plant functional types. Glob Biogeochem Cycles 10:693–709

    Article  CAS  Google Scholar 

  • He HS et al. (2012) A spatially explicit model of forest landscape disturbance, management, and succession LANDIS PRO 7.0 USERS GUIDE. Available: http://landis.missouri.edu/files/LANDIS_PRO_70_UserGuide.pdf

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424

  • Hickler T et al (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeograp 21:50–63

    Article  Google Scholar 

  • Huntingford C et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci Lett. doi:10.1038/NGEO1741

    Google Scholar 

  • Jacobs CMJ (1994) Direct impact of atmopsheric CO2 enrichment on regional transpiration, Ph.D. thesis, Wageningen Agricultural University

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans Royal Soc London Ser B 273:593–610

    Article  CAS  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Kaplan JO et al (2003) Climate change and Arctic ecosystems: 2. modeling, paleodata-model comparisons, and future projections. J Geophys Res 108: D19, 8171, doi:10.1029/2002JD002559

  • Kattge J (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Chang Biol 15:976–991. doi:10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  • Knorr W (2000) Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties. Glob Ecol Biogeogr 9(3):225–252

    Article  Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze E-D, Mooney H (eds) Biodiversity and ecosystem function. Springer Ecol Studies 99, Berlin, pp 117–140

    Google Scholar 

  • Körner C (1995) Leaf diffusive conductances in the major vegetation types of hte globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, New York, pp 463–490

    Chapter  Google Scholar 

  • Krinner G et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199

    Article  Google Scholar 

  • Kucharik C et al (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14(3):795–825

    Article  CAS  Google Scholar 

  • Kull O, Kruijt B (1998) Leaf photosynthetic light response: a mechanistic model for scaling photosynthesis to leaves and canopies. Funct Ecol 12:767–777

    Article  Google Scholar 

  • Lavorel S (2007) Plant functional types: are we getting any closer to the holy grail? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin Heidelberg

    Google Scholar 

  • Leakey ADB et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876. doi:10.1093/jxb/erp096

    Article  CAS  Google Scholar 

  • LeBauer DS et al (2013) Facilitating feedbacks between field measurements and ecosystem models. Ecol Monogr 83(2):133–154

    Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Lin YS et al (2015) Optimal stomatal behaviour around the world. Nat Clim Chang. doi:10.1038/NCLIMATE2550

    Google Scholar 

  • Long PL et al (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610

    Article  CAS  Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL et al (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob Biogeochem Cycles 6:101–124

    Article  CAS  Google Scholar 

  • Medvigy D et al. (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res Biogeosci (2005–2012) 114 (G1)

  • Mercado LM et al (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus B 59:553–565

    Article  Google Scholar 

  • Misson L et al (2006) Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California. Tree Physiol 26:729–741

    Article  CAS  Google Scholar 

  • Neilson RP (1995) A model for predicting continental scale vegetation distribution and water balance. Ecol Appl 5(2):362–385

    Article  Google Scholar 

  • Norby JR and Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Ann Rev Ecol, Evol Syst 42

  • Oleson KW et al. (2013) Technical description of version 4.5 of the community land model (CLM).Available in:http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf. Accessed in Jan-2-2015

  • Pavlick R et al (2013) The Jena diversity-dynamic global vegetation model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences 10:4137–4177. doi:10.5194/bg-10-4137-2013

    Article  Google Scholar 

  • Potter CS, Klooster A (1999) Dynamic global vegetation modelling for prediction of plant functional types and biogenic trace gas fluxes. Glob Ecol Biogeogr 8:473–488

    Article  Google Scholar 

  • Prentice IC (2007) Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Springer, Berlin Heidelberg

    Google Scholar 

  • Quillet A et al. (2010) Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ Rev

  • Randall DA et al (1996) A revised land surface parameterization (SiB2) for GCMs. part III: the greening of the Colorado State University General Circulation Model. J Clim 9:738–763

    Article  Google Scholar 

  • Rogers A (2014) The use and misuse of Vc, max in earth system models. Photosynth Res 119:15–29. doi:10.1007/s11120-013-9818-1

    Article  CAS  Google Scholar 

  • Rogers A et al (2014) Improving representation of photosynthesis in earth system models. New Phytol 204:12–14

    Article  Google Scholar 

  • Running S et al. (2010) Biome BGC. Available in: http://www.ntsg.umt.edu/project/biome-bgc. Accessed in: Dec-27-2014

  • Sage RW (2002) How terrestrial organisms sense, signal, and respond to carbon dioxide. Integ Comp Biol 42:469–480

    Article  Google Scholar 

  • Santarem D et al (2007) Optimizing a process-based ecosystem model with eddy-covariance flux measurements: a pine forest in southern France. Glob Biogeochem Cycles 21:GB2013. doi:10.1029/2006GB002834

    Google Scholar 

  • Sato H et al (2007) SEIB–DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Model 200:279–307

    Article  Google Scholar 

  • Schaefer K et al (2008) Combined simple biosphere/Carnegie Ames Stanford approach terrestrial carbon cycle model. J Geophys Res 113:G03034. doi:10.1029/2007JG000603

    Article  Google Scholar 

  • Schaefer K et al (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. J Geophys Res 117:G03010. doi:10.1029/2012JG001960

    Article  Google Scholar 

  • Scheiter S et al (2013) Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. doi:10.1111/nph.12210

    Google Scholar 

  • Scheitter S, Higgins SI (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modeling approach. Glob Chang Biol 15:2224–2246. doi:10.1111/j.1365

    Article  Google Scholar 

  • Sellers PJ and Mintz YA (1986) Simple biosphere model for use with general circulation models. J Atmosph Sci

  • Sellers PJ et al (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMs. part I: model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Sellers PJ et al (1996b) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1405

    Article  CAS  Google Scholar 

  • Sellers PJ et al (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Article  CAS  Google Scholar 

  • Sitch S et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Smith NG, Dukes JS (2012) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol. doi:10.1111/j.1365-2486.2012.02797.x

    Google Scholar 

  • Smith B et al (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeograp 10:621–637

    Article  Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43:19–35

    Article  Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Tjoelker MG et al (1999) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree speciesin relation to plant size and relative growth rate. Glob Change Biol 5:679–691

    Article  Google Scholar 

  • Walker AP. et al. (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? doi: 10.1002/2014GB004995

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119(1–2):89–100. doi:10.1007/s11120-013-9873-7

    Article  CAS  Google Scholar 

  • Woodward FI, Lomas MR (2004) Vegetation-dynamics –simulating responses to climate change. Biol Rev 79:643–670

    Article  CAS  Google Scholar 

  • Woodward FI et al (1995) A global land primary productivity and phytogeography model. Glob Biogeochem Cycles 9:471–490

    Article  CAS  Google Scholar 

  • Zaehle S, Friend AD (2010) Carbon and nitrogen cycle dynamics in the O-CN land sur face model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob Biogeochem Cyc 24, GB1005. doi: 10.1029/2009GB003521

  • Ziehn T et al (2011) Improving the predictability of global CO2 assimilation rates under climate change. Geophys Res Lett 38:L10404. doi:10.1029/2011GL047182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. C. Rezende.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezende, L.F.C., Arenque, B.C., Aidar, S.T. et al. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2 . Int J Biometeorol 60, 945–955 (2016). https://doi.org/10.1007/s00484-015-1087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1087-6

Keywords

Navigation