Skip to main content
Log in

A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study assessed the fate of benzene, toluene, and styrene in a full-scale petrochemical wastewater treatment plant (WWTP) with respect to the selection of an efficient and cost-effective control strategy. To prepare input parameters for TOXCHEM, wastewater samples were collected from the inlet of treatment units. Subsequently, the resultant emission rates were applied in AERMOD to study the dispersion patterns of the target volatile organic compounds (VOCs). Based on the TOXCHEM results, the overall emission of benzene, toluene, and styrene was 123,935 g/day, of which 73.4, 13.3, and 13.4% were benzene, toluene, and styrene, respectively. The results indicated that up to 99.5% of the target VOCs were removed from wastewater by volatilization and biodegradation mechanisms. Also, more than 85% of the VOCs emission occurred from the primary treatment units (American Petroleum Institute oil separator, equalization basin, and dissolved air flotation system). In some cases, the concentration distribution profiles resulting from AERMOD showed higher values than EPA reference concentrations (RfC) around the study area. The most affected area was near the WWTP with maximum 1-h concentrations of 8166, 1267, and 1228 μg/m3 of benzene, toluene, and styrene, respectively. Based on the modeling results, the most applicable and available methods for separating and ultimately disposing of VOCs were investigated and compared with the aim of reducing emission rates to meet ambient air quality standards. The results revealed that steam stripping is the most efficient and cost-effective VOCs control strategy in the studied plant. Moreover, thermal incineration was marked as the first choice for ultimate disposal of the contaminated air streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullahi ME, Hassan MAA, Noor ZZ, Ibrahim RKR (2014) Application of a packed column air stripper in the removal of volatile organic compounds from wastewater. Rev Chem Eng 30(5):431–451

    Article  Google Scholar 

  • Abdul-Wahab S, Al-Rawas G, Ali S, Fadlallah S, Al-Dhamri H (2017) Atmospheric dispersion modeling of CO2 emissions from a cement plant’s sources. Clean Technol Environ Policy 19(6):1621–1638

    Article  CAS  Google Scholar 

  • Aliabadi M, Aroujalian A, Raisi A (2012) Removal of styrene from petrochemical wastewater using pervaporation process. Desalination 284(2012):116–121

    Article  CAS  Google Scholar 

  • Aliyu AS, Ramli AT, Saleh MA (2014) Environmental impact assessment of a new nuclear power plant (NPP) based on atmospheric dispersion modeling. Stoch Environ Res Risk Assess 28(7):1897–1911

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Baawain M, Al-Mamun A, Omidvarborna H, Al-Jabri A (2017) Assessment of hydrogen sulfide emission from a sewage treatment plant using AERMOD. Environ Monit Assess 189(6):263

    Article  CAS  Google Scholar 

  • Banerjee S, Howard PH (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ Sci Technol 22(7):839–841

    Article  CAS  Google Scholar 

  • Behnami A, Farajzadeh D, Isazadeh S, Zoroufchi Benis K, Shakerkhatibi M, Shiri Z, Ghorghanlu S, Yadeghari A (2018) Diversity of bacteria in a full-scale petrochemical wastewater treatment plant experiencing stable hydrocarbon removal. J Water Process Eng 23(2018):285–291

    Article  Google Scholar 

  • Buxton MJ, Drummond MF, Van Hout BA, Prince RL, Sheldon TA, Szucs T, Vray M (1997) Modelling in ecomomic evaluation: an unavoidable fact of life. Health Econ 6(3):217–227

    Article  CAS  Google Scholar 

  • Capelli L, Sironi S, Del Rosso R, Céntola P (2009) Predicting odour emissions from wastewater treatment plants by means of odour emission factors. Water Res 43(7):1977–1985

    Article  CAS  Google Scholar 

  • Cetin E, Odabasi M, Seyfioglu R (2003) Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci Total Environ 312(1):103–112

    Article  CAS  Google Scholar 

  • Chang S, Lu C, Huang H, Hsu S (2015) Removal of VOCs emitted from p-xylene liquid storage tanks by a full-scale compost biofilter. Process Saf Environ Prot 93((Supplement C)):218–226

    Article  CAS  Google Scholar 

  • Chen H, Carter KE (2017) Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD. Environ Pollut 224((Supplement C)):300–309

    Article  CAS  Google Scholar 

  • Chen WH, Yang WB, Yuan CS, Yang JC, Zhao QL (2013) Influences of aeration and biological treatment on the fates of aromatic VOCs in wastewater treatment processes. Aerosol Air Qual Res 13(1):225–236

    Article  CAS  Google Scholar 

  • Chen MH, Yuan CS, Wang LC (2014) Source identification of VOCs in a petrochemical complex by applying open-path fourier transform infrared spectrometry. Aerosol Air Qual Res 14(6):1630–1638

    Article  CAS  Google Scholar 

  • Chen WH, Lin SJ, Lee FC, Chen MH, Yeh TY, Kao CM (2017) Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods. Process Saf Environ Prot 109((Supplement C)):410–419

    Article  CAS  Google Scholar 

  • Cheng WH, Chou MS (2003) VOC emission characteristics of petrochemical wastewater treatment facilities in southern Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(11):2521–2535

    Article  CAS  Google Scholar 

  • Cheng WH, Hsu SK, Chou MS (2008) Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control. J Environ Manage 88(4):1485–1494

    Article  CAS  Google Scholar 

  • Chirila E, Dobrinas S, Paunescu E, Stanciu G, Draghici C (2011) Determination of aromatic volatile compounds in petrochemical wastewater. Environ Eng Manag J 10(8):1081–1085

    Article  CAS  Google Scholar 

  • Cho WC, Poo KM, Mohamed HO, Kim TN, Kim YS, Hwang MH, Jung DW, Chae KJ (2018) Non-selective rapid electro-oxidation of persistent, refractory VOCs in industrial wastewater using a highly catalytic and dimensionally stable IrPd/Ti composite electrode. Chemosphere 206(2018):483–490

    Article  CAS  Google Scholar 

  • Cumming H, Rücker C (2017) Octanol-water partition coefficient measurement by a simple 1H NMR method. ACS Omega 2(9):6244–6249

    Article  CAS  Google Scholar 

  • Dou B, Hu Q, Li J, Qiao S, Hao Z (2011) Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J Hazard Mater 186(2):1615–1624

    Article  CAS  Google Scholar 

  • Escalas A, Guadayol JM, Cortina M, Rivera J, Caixach J (2003) Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res 37(16):3913–3920

    Article  CAS  Google Scholar 

  • Fang C, Khor SL (1989) Reduction of volatile organic compounds in aqueous solutions through air stripping and gas-phase carbon adsorption. Environ Prog Sustain Energy 8(4):270–278

    CAS  Google Scholar 

  • Fatehifar E, Kahforoshan D, Khazini L, Soltanmohammadzadeh J, Sattar H (2008) Estimation of VOC emission from wastewater treatment unit in a petrochemical plant using emission factors. In: WSEAS conferences Cantabria, Spain, Santander

  • Govind R, Lai L, Dobbs R (1991) Integrated model for predicting the fate of organics in wastewater treatment plants. Environ Prog Sustain Energy 10(1):13–23

    CAS  Google Scholar 

  • Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94(1):57–66

    Article  CAS  Google Scholar 

  • Hamoda MF (2006) Air pollutants emissions from waste treatment and disposal facilities. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(1):77–85

    Article  CAS  Google Scholar 

  • Hansen KC, Zhou Z, Yaws CL, Aminabhavi TM (1993) Determination of Henry’s law constants of organics in dilute aqueous solutions. J Chem Eng Data 38(4):546–550

    Article  CAS  Google Scholar 

  • Hassan SQ, Timberlake DL (1992) Steam stripping and batch distillation for the removal and/or recovery of volatile organic compounds from industrial wastes. J Air Waste Manag Assoc 42(7):936–943

    Article  CAS  Google Scholar 

  • Hwang Y-L, Keller GE, Olson JD (1992) Steam stripping for removal of organic pollutants from water I: Stripping effectiveness and stripper design. Ind Eng Chem Res 31(7):1753–1759

    Article  CAS  Google Scholar 

  • Kemp J, Zytner R, Sterne L, Rittmann B (2002) Measuring and modelling VOC biotransformation rates. Environ Technol 23(5):547–551

    Article  CAS  Google Scholar 

  • Khan FI, Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prevet Proc Ind 13(6):527–545

    Article  Google Scholar 

  • Leong LY, Regan MM, Kuo JF, Wong E (1992) An overview of the pooled emission estimation program (PEEP) for POTWs. Environ Prog Sustain Energy 11(4):278–287

    CAS  Google Scholar 

  • Li GW, Hu HY, Hao JM, Fujie K (2002) Use of biological activated carbon to treat mixed gas of toluene and benzene in biofilter. Environ Technol 23(4):467–477

    Article  CAS  Google Scholar 

  • Liu Y, Deng J, Xie S, Wang Z, Dai H (2016) Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chin J Catal 37(8):1193–1205

    Article  CAS  Google Scholar 

  • Melcer H, Bell J, Thompson D, Yendt C, Kemp J, Steel P (1994) Modeling volatile organic contaminants’ fate in wastewater treatment plants. J Environ Eng 120(3):588–609

    Article  CAS  Google Scholar 

  • Moretti EC (2002) Reduce VOC and HAP emissions. Chem Eng Prog 98(6):30–40

    CAS  Google Scholar 

  • Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manage 91(5):1039–1054

    Article  CAS  Google Scholar 

  • Oda T (2003) Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air. J Electrostat 57(3):293–311

    Article  CAS  Google Scholar 

  • Ortiz-Del Castillo J, Guerrero-Medina G, Lopez-Toledo J, Rocha J (2000) Design of steam-stripping columns for removal of volatile organic compounds from water using random and structured packings. Ind Eng Chem Res 39(3):731–739

    Article  CAS  Google Scholar 

  • Padhi SK, Gokhale S (2014) Biological oxidation of gaseous VOCs—rotating biological contactor a promising and eco-friendly technique. J Environ Chem Eng 2(4):2085–2102

    Article  CAS  Google Scholar 

  • Parmar GR, Rao N (2008) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39(1):41–78

    Article  CAS  Google Scholar 

  • Rajai BH, Kansara AM, Singh PS (2016) Treatment of wastewater containing volatile organics using hollow fibre PDMS-polysulfone membrane system: recovery of organics and water reclamation. Curr Sci 111(3):517–523

    Article  CAS  Google Scholar 

  • Ray M, Chen JP, Wang LK, Pehkonen SO (2007) Handbook of environmental engineering, advanced physicochemical treatment processes. Humana Press Inc., Totowa, p 07512

    Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process—a framework and guidance. Environ Model Softw 22(11):1543–1556

    Article  Google Scholar 

  • Schlegelmilch M, Streese J, Stegmann R (2005) Odour management and treatment technologies: an overview. Waste Manage 25(9):928–939

    Article  CAS  Google Scholar 

  • Shakerkhatibi M, Monajemi P, Jafarzadeh M, Mokhtari S, Farshchian M (2012) Feasibility study on EO/EG wastewater treatment using pilot scale SBR. Int J Environ Res 7(1):195–204

    Google Scholar 

  • Shakerkhatibi M, Mosaferi M, Zorufchi Benis K, Akbari Z (2016) Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz petrochemical complex. Environ Health Eng Manag J 3(3):151–158

    Article  CAS  Google Scholar 

  • Shim WG, Lee JW, Moon H (2006) Adsorption equilibrium and column dynamics of VOCs on MCM-48 depending on pelletizing pressure. Microporous Mesoporous Mater 88(1):112–125

    Article  CAS  Google Scholar 

  • Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1):78–83

    Article  CAS  Google Scholar 

  • Tata P, Witherspoon J, Lue-Hing C (2003) VOC emissions from wastewater treatment plants: characterization, control, and compliance. CRC Press, Boa Raton

    Book  Google Scholar 

  • Thomas B, German GS, Hande Y, Serge R, Luis DS (2016) Best available techniques (BAT) reference document for common waste water and waste gas treatment/management systems in the chemical sector, Publications Office of the European Union

  • Toth AJ, Mizsey P (2015) Comparison of air and steam stripping: removal of organic halogen compounds from process wastewaters. Int J Environ Sci Technol 12(4):1321–1330

    Article  CAS  Google Scholar 

  • Urashima K, Jen-Shih C (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielectr Electr Insul 7(5):602–614

    Article  CAS  Google Scholar 

  • US-EPA (1988) Industrial wastewater steam stripper performance, United States Environmental Protection Agency, Office of Air Quality Planning and Standards

  • US-EPA (1990) Industrial wastewater volatile organic compound emissions, background information for BACT/LAER determinations, United States Environmental Protection Agency, Office of Air Quality Planning and Standards

  • US-EPA (1991) Air stripping of aqueous solutions, United States Environmental Protection Agency, Office of Emergency and Remedial Response

  • US-EPA (1992) Control of volatile organic compound emissions from industrial wastewater, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Office of Air and Radiation

  • US-EPA (1994) Air emissions models for waste and wastewater, United States Environmental Protection Agency, Office of Air Quality Planning and Standards

  • US-EPA (2007) Reference concentration for chronic inhalation exposure (RfC), IRIS summary, integrated risk information system, United States Environmental Protection Agency

  • US-NLM (2018) Toxicology data network. https://www.nlm.nih.gov/. U.S. National Library of Medicine. Accessed July 2018

  • Van der Vaart D, Vatvuk W, Wehe A (1991a) Thermal and catalytic incinerators for the control of VOCs. J Air Waste Manag Assoc 41(1):92–98

    Article  Google Scholar 

  • Van der Vaart D, Vatavuk W, Wehe A (1991b) The cost estimation of thermal and catalytic incinerators for the control of VOCs. J Air Waste Manag Assoc 41(4):497–501

    Article  Google Scholar 

  • Van Groenestijn JW, Hesselink PG (1993) Biotechniques for air pollution control. Biodegradation 4(4):283–301

    Article  Google Scholar 

  • Wang CH, Lin SS, Chen CL, Weng HS (2006) Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere 64(3):503–509

    Article  CAS  Google Scholar 

  • Wiwanitkit V (2008) Estimating cancer risk due to benzene exposure in some urban areas in Bangkok. Stoch Environ Res Risk Assess 22(1):135–137

    Article  Google Scholar 

  • Wu BZ, Feng TZ, Sree U, Chiu KH, Lo JG (2006) Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park. Anal Chim Acta 576(1):100–111

    Article  CAS  Google Scholar 

  • Xie B, Liang S, Tang Y, Mi W, Xu Y (2009) Petrochemical wastewater odor treatment by biofiltration. Bioresour Technol 100(7):2204–2209

    Article  CAS  Google Scholar 

  • Zhang K (2010) Characterization and uncertainty analysis of VOCs emissions from industrial wastewater treatment plants. Environ Prog Sustain Energy 29(3):265–271

    Article  CAS  Google Scholar 

  • Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal Today 264((Supplement C)):270–278

    Article  CAS  Google Scholar 

  • Zoroufchi Benis K, Fatehifar E, Shafiei S, Keivani Nahr F, Purfarhadi Y (2016a) Design of a sensitive air quality monitoring network using an integrated optimization approach. Stoch Environ Res Risk Assess 30(3):779–793

    Article  Google Scholar 

  • Zoroufchi Benis K, Shakerkhatibi M, Yousefi R, Kahforoushan D, Derafshi S (2016b) Emission patterns of acrylonitrile and styrene around an industrial wastewater treatment plant in Iran. Int J Environ Sci Technol 13(10):2353–2362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation for the help and support provided by Tabriz Petrochemical Company. The financial support provided by Tabriz University of Medical Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shakerkhatibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnami, A., Zoroufchi Benis, K., Shakerkhatibi, M. et al. A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant. Stoch Environ Res Risk Assess 33, 13–29 (2019). https://doi.org/10.1007/s00477-018-1623-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1623-0

Keywords

Navigation