Skip to main content
Log in

On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates

Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper discusses some aspects of flood frequency analysis using the peaks-over-threshold model with Poisson arrivals and generalized Pareto (GP) distributed peak magnitudes under nonstationarity, using climate covariates. The discussion topics were motivated by a case study on the influence of El Niño–Southern Oscillation on the flood regime in the Itajaí river basin, in Southern Brazil. The Niño3.4 (DJF) index is used as a covariate in nonstationary estimates of the Poisson and GP distributions scale parameters. Prior to the positing of parametric dependence functions, a preliminary data-driven analysis was carried out using nonparametric regression models to estimate the dependence of the parameters on the covariate. Model fits were evaluated using asymptotic likelihood ratio tests, AIC, and Q–Q plots. Results show statistically significant and complex dependence relationships with the covariate on both nonstationary parameters. The nonstationary flood hazard measure design life level (DLL) was used to compare the relative performances of stationary and nonstationary models in quantifying flood hazard over the period of records. Uncertainty analyses were carried out in every step of the application using the delta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abers RN (2007) Organizing for governance: building collaboration in Brazilian river basins. World Dev 35(8):1450–1463

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Balkema A, de Haan L (1974) Residual life time at great age. Ann Probab 2(5):792–804

    Article  Google Scholar 

  • Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dynam 35(7–8):1493–1508

    Article  Google Scholar 

  • Bernardara P, Mazas F, Kergadallan X, Hamm L (2014) A two-step framework for over-threshold modelling of environmental extremes. Nat Hazards Earth Syst Sci 14(3):635–647

    Article  Google Scholar 

  • Bhunya P, Singh R, Berndtsson R, Panda S (2012) Flood analysis using generalized logistic models in partial duration series. J Hydrol 420:59–71

    Article  Google Scholar 

  • Bhunya P, Berndtsson R, Jain SK, Kumar R (2013) Flood analysis using negative binomial and Generalized Pareto models in partial duration series (PDS). J Hydrol 497:121–132

    Article  Google Scholar 

  • Bras RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, Reading

    Google Scholar 

  • Casella G, Berger RL (1990) Statistical inference, vol 70. Duxbury Press, Belmont

    Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. J R Stat Soc C 54(1):207–222

    Article  Google Scholar 

  • Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127(2):353–369

    Article  Google Scholar 

  • Chow V, Maidment D, Mays L, et al. (1988) Applied hydrology. McGraw-Hill series in water resources and environmental engineering. McGraw-Hill, New York

  • Clarke R (2007) Hydrological prediction in a non-stationary world. Hydrol Earth Syst Sc 11(1):408–414. doi:10.5194/hess-11-408-2007

    Article  Google Scholar 

  • Coles S (2010) An introduction to statistical modeling of extreme values. Springer, London

    Google Scholar 

  • Cooley D (2009) Extreme value analysis and the study of climate change. Clim Change 97(1–2):77–83

    Article  Google Scholar 

  • Cooley D (2013) Return periods and return levels under climate change. In: Extremes in a changing climate, Springer, London, pp 97–114

  • Cordero A, Medeiros P (2003) Estimativa da curva chave de Blumenau. In: XV Simpósio Brasileiro de Recursos Hídricos

  • Correia FN (1983) Métodos de análise e determinação de caudais de cheia. Laboratório Nacional de Engenharia Civil, Lisbon

    Google Scholar 

  • Cunnane C (1979) A note on the Poisson assumption in partial duration series models. Water Resour Res 15(2):489–494

    Article  Google Scholar 

  • Davison A, Ramesh N (2000) Local likelihood smoothing of sample extremes. J R Stat Soc B 62(1):191–208

    Article  Google Scholar 

  • Davison A, Smith R (1990) Models for exceedances over high thresholds. J R Stat Soc B 52(3):393–442

    Google Scholar 

  • Davison AC (2003) Statistical models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Delgado J, Apel H, Merz B (2010) Flood trends and variability in the Mekong river. Hydrol Earth Syst Sci 14(3):407–418

    Article  Google Scholar 

  • Eastoe EF, Tawn JA (2010) Statistical models for overdispersion in the frequency of peaks over threshold data for a flow series. Water Resour Res 46(2):W02510. doi:10.1029/2009WR007757

  • Ekanayake S, Cruise J (1993) Comparisons of Weibull-and exponential-based partial duration stochastic flood models. Stoch Hydrol Hydraul 7(4):283–297

    Article  Google Scholar 

  • Fernandes W, Naghettini M, Loschi R (2010) A bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stoch Environ Res Risk Assess 24(8):1127–1143

    Article  Google Scholar 

  • Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical proceedings of the Cambridge Philosophical Society, vol 24. Cambridge University Press, Cambridge, pp 180–190

  • Frank B (2003) Uma história das enchentes e seus ensinamentos, vol 20. Edifurb, Blumenau, pp 15–62

    Google Scholar 

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44(3):423–453

    Article  Google Scholar 

  • Grimm AM (2011) Interannual climate variability in south america: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25(4):537–554

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589–1609

    Article  Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) limate variability in southern south america associated with el niño and la niñ a events. J Clim 13(1):35–58

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Hastie TJ, Tibshiran RJ (1990) Generalized additive models, vol 43. CRC Press, London

    Google Scholar 

  • Heffernan JE, Stephenson A, Gilleland E (2013) Ismev: an introduction to statistical modeling of extreme values. R Package Version 1:39

    Google Scholar 

  • Hundecha Y, St-Hilaire A, Ouarda T, El Adlouni S, Gachon P (2008) A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada. J Appl Meteorol Clim 47(11):2745–2759

    Article  Google Scholar 

  • Jakob D (2013) Nonstationarity in extremes and engineering design. In: Extremes in a changing climate. Springer, London, pp 363–417

  • Jin EK, Kinter JL III, Wang B, Park CK, Kang IS, Kirtman B, Kug JS, Kumar A, Luo JJ, Schemm J et al (2008) Current status of enso prediction skill in coupled ocean-atmosphere models. Clim Dyn 31(6):647–664

    Article  Google Scholar 

  • Katz RW (2013) Statistical methods for nonstationary extremes. In: Extremes in a changing climate. Springer, London, pp 15–37

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8):1287–1304

    Article  Google Scholar 

  • Kirby W (1969) On the random occurrence of major floods. Water Resour Res 5(4):778–784

    Article  Google Scholar 

  • Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3–4):103–117

    Article  Google Scholar 

  • Lee T, Ouarda T (2010) Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. J Geophys Res (1984–2012) 115(D13)

  • Lima CH, Lall U, Jebara T, Barnston AG (2009) Statistical prediction of ENSO from subsurface sea temperature using a nonlinear dimensionality reduction. J Clim 22(17):4501–4519

    Article  Google Scholar 

  • Lopez J, Francés F (2013) Non-stationary flood frequency analysis in continental spanish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17(8):3189–3203

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Martins ESP, Clarke RT (1993) Likelihood-based confidence intervals for estimating floods with given return periods. J Hydrol 147(1):61–81

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models (Monographs on statistics and applied probability 37). Chapman Hall, London

    Google Scholar 

  • Milly P, Betancourt J, Falkenmark M, Hirsch R, Kundzewicz Z, Lettenmaier D, Stouffer R (2008) Stationarity is dead: whither water management? Science 319(5863):573

    Article  CAS  Google Scholar 

  • Naghettini M, Pinto E (2007) Hidrologia estatística. CPRM, Belo Horizonte

    Google Scholar 

  • NERC (1975) Flood Studies Report, vol I. Natural Environment Research Council

  • Nery JT, Baldo MC, Martins MdLOF (2000) O comportamento da precipitação na Bacia do Itajaí. Acta Sci-Technol 22(5):1429–1435

    Google Scholar 

  • Obeysekera J, Salas JD (2014) Quantifying the uncertainty of design floods under nonstationary conditions. J Hydrol Eng 19(7):1438–1446

    Article  Google Scholar 

  • Olsen JR, Lambert JH, Haimes YY (1998) Risk of extreme events under nonstationary conditions. Risk Anal 18(4):497–510

    Article  Google Scholar 

  • Önöz B, Bayazit M (2001) Effect of the occurrence process of the peaks over threshold on the flood estimates. J Hydrol 244(1):86–96

    Article  Google Scholar 

  • Ouarda T, El-Adlouni S (2011) Bayesian nonstationary frequency analysis of hydrological variables. J Am Water Resour Assoc 47(3):496–505

    Article  Google Scholar 

  • Parey S, Malek F, Laurent C, Dacunha-Castelle D (2007) Trends and climate evolution: Statistical approach for very high temperatures in france. Clim change 81(3–4):331–352

    Article  Google Scholar 

  • Parey S, Hoang TTH, Dacunha-Castelle D (2010) Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7–8):698–718

    Article  Google Scholar 

  • Pauli F, Coles S (2001) Penalized likelihood inference in extreme value analyses. J Appl Stat 28(5):547–560

    Article  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Article  Google Scholar 

  • R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/, ISBN 3-900051-07-0

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res: Atmospheres (1984–2012) 108(D14)

  • Renard B, Lang M, Bois P (2006) Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch Environ Res Risk Assess 21(2):97–112

    Article  Google Scholar 

  • Renard B, Sun X, Lang M (2013) Bayesian methods for non-stationary extreme value analysis. In: Extremes in a changing climate, Springer, London, pp 39–95

  • Rootzén H, Katz RW (2013) Design life level: quantifying risk in a changing climate. Water Resour Res 49(9):5964–5972

    Article  Google Scholar 

  • Rosbjerg D, Rasmussen F (1991) Modelling of exceedances in partial duration series. In: Proceeding of the international hydrology and water resources symposium, national conference publication—Institute of Engineers, vol 3, pp 755–760

  • Rosbjerg D, Madsen H, Rasmussen PF (1992) Prediction in partial duration series with generalized Pareto-distributed exceedances. Water Resour Res 28(11):3001–3010

    Article  Google Scholar 

  • Salas JD, Obeysekera J (2014) Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J Hydrol Eng 19(3):554–566

    Article  Google Scholar 

  • Serinaldi F (2013) On the relationship between the index of dispersion and Allan factor and their power for testing the poisson assumption. Stoch Environ Res Risk Assess 27(7):1773–1782

  • Serinaldi F (2014) Dismissing return periods! Stoch Environ Res Risk Assess 1–11

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Wat Resour 77:17–36

    Article  Google Scholar 

  • Shane R, Lynn W (1964) Mathematical model for flood risk evaluation. J Hydr Eng Div 90(HY 6):4119–4122

    Google Scholar 

  • Silva AT, Portela MM, Naghettini M (2014) On peaks-over-threshold modeling of floods with zero-inflated poisson arrivals under stationarity and nonstationarity. Stoch Environ Res Risk Assess 28(6):1587–1599

  • Tachini M (2010) Avaliação de danos associados às inundações no município de Blumenau. PhD thesis, Universidade Federal de Santa Catarina

  • Tramblay Y, Neppel L, Carreau J, Najib K (2013) Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrol Sci J 58(2):280–294

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777

  • Ward PJ, Eisner S, Flörke M, Dettinger MD, Kummu M (2014) Annual flood sensitivities to El Niño-Southern Oscillation at the global scale. Hydrol Earth Syst Sci 18(1):47–66. doi:10.5194/hess-18-47-2014

    Article  Google Scholar 

  • Wigley TM (1988) The effect of changing climate on the frequency of absolute extreme events. Clim Monit 17(1–2):44–55

    Google Scholar 

  • Wigley TM (2009) The effect of changing climate on the frequency of absolute extreme events. Clim Change 97(1–2):67–76

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73(1):3–36

    Article  Google Scholar 

  • Yee TW (2014) VGAM: Vector generalized linear and additive models. http://CRAN.R-project.org/package=VGAM, r package version 0.9-4

  • Yee TW, Stephenson AG (2007) Vector generalized linear and additive extreme value models. Extremes 10(1–2):1–19

    Article  Google Scholar 

  • Zelenhasic E (1970) Theoretical probability distributions for flood peaks. Hydrology paper 42, Colorado State University, Fort Collins

Download references

Acknowledgments

The authors wish to acknowledge the financial support to this research, provided by the Portuguese Science and Technology Foundation (FCT) through a scholarship for A.T. Silva (grant SFRH/BD/86522/2012), and by the Brazilian Council for the Development of Science and Technology (CNPq) through a grant for M. Naghettini (302382/2012-7). The authors also wish to thank Dr. Francesco Serinaldi (Newcastle University, UK) and an anonymous reviewer for their valuable and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Tiago Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.T., Naghettini, M. & Portela, M.M. On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates. Stoch Environ Res Risk Assess 30, 207–224 (2016). https://doi.org/10.1007/s00477-015-1072-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1072-y

Keywords

Navigation