Skip to main content

Advertisement

Log in

Three (Turkish) olive cultivars display contrasting salt stress-coping mechanisms under high salinity

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

All olive cultivars survived high salinity, yet, the question was how they orchestrated antioxidative defense, mannitol accumulation and ion sequestration with different efficiencies due to their genetic makeup.

Abstract

A Mediterranean plant, Olea europaea (olive) is well adapted to high temperature, high light intensity and dry soil conditions hence accepted to be moderately salt tolerant. Control of Na+ and Cl uptake, accumulation of osmoprotectants and high antioxidative capacity were all attributed to salt stress tolerance of olive, however, there is a great discrepancy between the efficiency and onset of these processes among different cultivars. In present study, three olive cultivars namely Ayvalık, Gemlik and Kilis which are well adapted to different climatic regions extending from cool and high precipitation receiving regions to long hot and dry periods with high light intensity through the growth season were tested for their relative salt-tolerance mechanisms. For this aim, 1-year-old cuttings of these cultivars were treated with 0, 100, 200 and 300 mM NaCl for 30 days. Several physiological and biochemical processes along with their growth performance were analyzed during the experimental period. In general, we found discrepancies in salt stress-coping strategies of these cultivars. Efficient osmoprotection in Gemlik cv. lead to a better leaf water status and photosynthetic performance while, active ion sequestration and high levels of SOD and POX enabled Kilis cv. to be protected from the negative impact of salinity. Moreover, Ayvalık cv. accumulated high levels of mannitol that probably served as an antioxidative molecule to cope with salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Bader B, Aissaoui F, Kmicha I, Ben Salema A, Chehab H, Gargouri K, Boujnah D, Chaieb M (2015) Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs ‘Picholine’, ‘Meski’ and ‘Ascolana’) growth and ion accumulation. Desalination 364: 46–52

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Ben Ahmed C, Rouina BB, Sensoy S, Boukhriss M, Ben Abdullah F (2009) Saline water irrigation effects on antioxidant defense system and proline accumulation in leaves and roots of field-grown olive. J Agric Food Chem 57(24):11484–11490

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer N (1970) Methoden der enzymatischen Analyse. Akademie Verlag Berlin 1:636–647

    Google Scholar 

  • Bor M, Özdemir F, Türkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bor M, Turkan I (2019) Is there a room for GABA in ROS and RNS signalling? Environ Exp Bot 161:67–73

    Article  CAS  Google Scholar 

  • Boussadia O, Mariem BF, Mechri B, Boussetta W, Braham M, Hadj SBE (2008) Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci Hortic 116:388–393

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cimato A, Castelli S, Tattini M, Traversi ML (2010) An ecophysiological analysis of salinity tolerance in olive. Environ Exp Bot 68:214–221

    Article  CAS  Google Scholar 

  • Conde C, Delrot S, Gero`s H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562

    Article  CAS  PubMed  Google Scholar 

  • Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I (2002) Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci Hortic 96:235–247

    Article  CAS  Google Scholar 

  • Chartzoulakis K (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manag 78:108–121

    Article  Google Scholar 

  • Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M (2006) Response of Two Olive Cultivars to Salt Stress and Potassium Supplement. J Plant Nutr 29: 2063–2078

    Article  CAS  Google Scholar 

  • Conde A, Paulo S, Agasse A, Conde C, Gerós H (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52(10):1766–1775

    Article  CAS  PubMed  Google Scholar 

  • Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Sa B, Celano G (2003) Drought-induced variations of water relations parameters in Olea europea. Plant Soil 257(2):381–389

    Article  CAS  Google Scholar 

  • Dichio B, Margiotta G, Xiloyannis C, Bufo SA, Sofo A, Cataldi TRI (2009) Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit. Trees 23:247–256

    Article  CAS  Google Scholar 

  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Silva S, Silva EN, Carvalho FE, Lima CS, Alves FA, Silveira JAG (2010) Physiological alterations modulated by rootstock and scion combination in cashew under salinity. Sci Hort 127(1):39–45

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Goulas V, Exarchou V, Troganis AN, Psomiadou E, Fotsis T, Briasoulis E, Gerothanassis IP (2009) Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res 53(5):600–608

    Article  CAS  PubMed  Google Scholar 

  • Gucci R, Lombardini L, Tattini M (1997) Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 86–123

    Google Scholar 

  • Hernández JA, Jiménez P, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Herzog V, Fahimi H (1973) Determination of the activity of peroxidase. Anal Biochem 55:554–562

    Article  CAS  PubMed  Google Scholar 

  • Horwitz W, Latimer GW (2007) Official methods of analysis of AOAC International. Gaithersburg, MD

    Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90(4):485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahraman M, Sevim G, Bor M (2019) The Role of Proline, Glycinebetaine, and Trehalose in Stress-Responsive Gene Expression. In: Hossain M, Kumar V, Burritt D, Fujita M, Mäkelä P (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham

    Google Scholar 

  • Kchaou H, Larbi A, Gargouri K, Chaieb M, Morales F, Msallem M (2010) Assessment of tolerance to NaCI salinity of five olive cultivars, based on growth characteristics and Na+ and CL exclusion mechanism. Sci Hortic 124:306–315

    Article  CAS  Google Scholar 

  • Larsen FS, Higgins Wir A (1989) Diurnal water relations of apple, apricot, grape, olive and peach in an arid environment. Sci Hortic 39:211–222

    Article  Google Scholar 

  • Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mousavi A, Lessani H, Babalar M, Talaie A, Fallahi E (2008) Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J Plant Nutr 31(11):1906–1916

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq A, Hanif MA, Ayub MA, Bhatti IA, Romdhane M (2020) Olive. In: Hanif MA, Nawaz H, Khan MM, Byrne HJ (eds) Medicinal plants of SouthAsia. Elsevier, pp 541–555

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Func Plant Biol 40:832–847

    Article  CAS  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiological and antioxidant responses of the perennial xerophyte Capparis ovata Desf to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Regni L, Del Pino AM, Mousavi S, Palmerini CA, Baldoni L, Mariotti R, Mairech H, Gardi T, D’Amato R, Proietti P (2019) Behavior of four olive cultivars during salt stress. Front Plant Sci 10(867):1–9

    Google Scholar 

  • Remorini D, Melgar JC, Guidi L, Degl’Innocenti E, Castelli S, Traversi ML (2009) Interaction of root zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environ Exp Bot 65:210–219

    Article  CAS  Google Scholar 

  • Rhızopoulou S, Meletiou-Christou MS, Diamandoglou S (1991) Water relations for sun and sahade leaves of four Mediterranean evergreen sclerophytes. J Exp Bot 42:627–635

    Article  Google Scholar 

  • Rugini E, Cristofori V, Silvestri C (2016) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotech Adv 34:687–696

    Article  CAS  Google Scholar 

  • Rugini E, Fedeli E (1990) Olive as an oilseed crop. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 10. Legumes and oil-seed crops I. Springer, Berlin, pp 593–641

    Google Scholar 

  • Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC (2002) The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci 162(5):825–831

    Article  CAS  Google Scholar 

  • Schwanz P, Polle A (2001) Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba × tremula). J Exp Bot 52:133–143

    CAS  PubMed  Google Scholar 

  • Scotti-Campos P, Thu Pham Thi A (1997) Effect of abscisic acid pretreatment on membrane leakage and lipid composition of Vigna unguiculata leaf discs subjected to osmotic stress. Plant Sci 130:11–18

    Article  Google Scholar 

  • Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20

    Article  CAS  Google Scholar 

  • Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowlegde and hypothesis. Plant Sci 241:109–199

    Article  CAS  PubMed  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda N, Ephrath J, Dag A, Beiersdorf I, Presnov E, Yermiyahu U, Ben-Gal A (2017) Root growth dynamics of olive (Olea europaea L.) affected by irrigation induced salinity. Plant Soil 411(1/2):305–318

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302

    Article  CAS  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Tattini M, Gucci R (1999) Ionic relations and osmotic adjustment in olive plants under salinity stress. Physiol Plant 95:203–210

    Article  Google Scholar 

  • Tattini M, Traversi ML (2009) On the mechanism of salt tolerance in olive (Olea europaea L.) under low- or high-Ca2+ supply. Environ Exp Bot 65(1):72–81

    Article  CAS  Google Scholar 

  • Tattini M, Montagni G, Traversi ML (2002) Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations. Tree Physiol 22:403–412

    Article  PubMed  Google Scholar 

  • Uğur Görgün A, Aslan AE, Kül M, İlhan S, Dimlioğlu G, Bor M, Özdemir F (2017) Association between radionuclides (210Po and 210Pb) and antioxidantenzymes in oak (Quercus coccifera) and mastic tree (Pistacia lentiscus). J Environ Radio 174:71–77

    Article  CAS  Google Scholar 

  • Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I (2015) Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Ann Bot 115(3):449–463

    Article  CAS  PubMed  Google Scholar 

  • Vitagliano C, Sebastiani L (2002) Physiological and biochemical remarks on environmental stress in olive (Olea europaea L.). In:Vitagliano C, Martelli GP (ed) 4th IS on olive growing acta hort 586, ISHS pp 435–441

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005

    Article  PubMed  Google Scholar 

  • Zarcinas BA, Cartwright B, Spouncer LR (1987) Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 18(1):131–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by a grant from Agricultural Research and Policies Council of the Turkish Ministry of Agriculture and Forestry (TAGEM/TSK AD/14/A13/P.02/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Bor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Baoshan Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, M., Varol, N., Yolcu, S. et al. Three (Turkish) olive cultivars display contrasting salt stress-coping mechanisms under high salinity. Trees 35, 1283–1298 (2021). https://doi.org/10.1007/s00468-021-02115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02115-w

Keywords

Navigation