Skip to main content

Advertisement

Log in

Cloning, characterization and functional analysis of a flavonol synthase from Vaccinium corymbosum

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

VcFLS from Vaccinium corymbosum promoted myricetin biosynthesis in Arabidopsis thaliana and VcFLS expression was induced by salicylic acid.

Abstract

Flavonoids are polyphenols with important functions in pigmentation, UV filtration, and symbiotic nitrogen fixation. Flavonols are a class of flavonoids that are produced by the desaturation of dihydroflavanols in a reaction that is catalyzed by flavonol synthase (FLS). In the study reported here, we cloned the full-length cDNA of FLS (designated as VcFLS) from Vaccinium corymbosum (blueberry) using rapid amplification of cDNA ends (RACE). The cDNA contained a 1005-bp open reading frame that encoded a 334-amino acid protein. Phylogenetic analysis showed that VcFLS was closely related to FaFLS, a flavonol synthase that catalyzed the formation of kaempferol and had little effect on the formation of quercetin. Quantitative RT-PCR analysis demonstrated that VcFLS was expressed in all of the tissues tested, with particularly high expression in the petals and young leaves (both green and red). The flavanols myricetin and quercetin also occurred in all of these tested tissues, with the highest levels detected in mature leaves. The expression of VcFLS was not consistent with the accumulation of quercetin and myricetin in different tissues, nor were the expressions of VcFLS, VcPAL, VcCHS, VcF3H, and VcF3′5′H consistent with the accumulation of the quercetin during fruit development. However, the change in the trend of VcCHS and VcF3H expression was similar with myricetin accumulation during fruit development. Expression profiling analysis revealed that VcFLS expression was induced by salicylic acid, a phytohormone involved in plant defense against pathogens, and was suppressed by gibberellic acid, a phytohormone involved in various aspects of plant development. Heterologous expression of VcFLS in Arabidopsis thaliana increased the content of myricetin, but did not affect quercetin content. Thus, we conclude that VcFLS is a key enzyme in the flavonol biosynthetic pathway and would appear to be involved in the plant defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida JRM, D’Amico E, Preuss A, Carbone F, de Vos CHR, Deiml B, Mourgues F, Perrotta G, Fischer TC, Bovy AG, Martens S, Rosati C (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa). Arch Biochem Biophys 465:61–71

    Article  CAS  PubMed  Google Scholar 

  • Borges G, Degeneve A, Mullen W, Crozier A (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants and cranberryies. J Agric Food Chem 58:3901–3909

    Article  CAS  PubMed  Google Scholar 

  • Castrejón ADR, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:564–572

    Article  Google Scholar 

  • Cheng C, Xu X, Singer SD, Li J, Zhang H, Gao M, Wang L, Song J, Wang X (2013) Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS One 8:e80044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho MJ, Howard LR, Prior RL, Clark JR (2004) Flavonol glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 84:1771–1782

    Article  Google Scholar 

  • Cho MJ, Howard LR, Prior RL, Clark JR (2005) Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J Sci Food Agric 85:2149–2158

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokhanieh AY, Aghdam MS, Fard JR, Hassanpour H (2013) Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Sci Hortic 154:31–36

    Article  CAS  Google Scholar 

  • Emongor V (2007) Gibberellic Acid (GA3) influence on vegetative growth, nodulation and yield of cowpea (Vigna unguiculata L.) walp. J Agron 6:509–571

    Article  CAS  Google Scholar 

  • Fang F, Tang K, Huang W (2013) Changes of flavonol synthase and flavonol contents during grape berry development. Eur Food Res Technol 237:529–540

    Article  CAS  Google Scholar 

  • Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K (2006) Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 70:632–638

    Article  CAS  PubMed  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye D, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • Giovanelli G, Buratti S (2009) Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem 112:903–908

    Article  CAS  Google Scholar 

  • Guan C, Song X, Ji J, Li X, Jin C, Guan W, Li J, Wang G (2014) Salicylic acid treatment enhances expression of chalcone isomerase gene and accumulation of corresponding flavonoids during fruit maturation of Lycium chinense. Eur Food Res Technol 239:857–865

    Article  CAS  Google Scholar 

  • Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    Article  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakola L, Määttä K, Pirttilä AM, Törrönen R, Kärenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan N (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. doi:10.3389/fpls.2015.00462

    Google Scholar 

  • Kim Y (1999) Gibberellic acid regulates flavonoid 3′,5′-hydroxylase gene transcription in the corolla of Gentiana scabra. J Plant Biol 42:253–258

    Article  CAS  Google Scholar 

  • Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BSJ, Muday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156:144–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54–61

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kim YB, Kim Y, Zhao S, Kim HH, Chung E, Lee J, Park SU (2013) Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buchwheat. J Plant Physiol 170:1630–1636

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Gregan S, Winefield C, Jordan B (2015) From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 38:905–919

    Article  CAS  PubMed  Google Scholar 

  • Martineau LC, Couture A, Spoor D, Benhaddou-Andaloussi A, Harris C, Meddah B, Leduc C, Burt A, Vuong T, Le PM, Prentki M, Bennett SA, Arnason JT, Haddad PS (2006) Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13:612–623

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Kita M, Ogawa K, Tomono Y, Endo T, Omura M (2002) Flavonol synthase gene expression during citrus fruit development. Physiol Plant 114:251–258

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Hortic 118:314–320

    Article  CAS  Google Scholar 

  • Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664

    Article  CAS  PubMed  Google Scholar 

  • Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ (2008) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 147:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YJ, Biswas R, Phillips RD, Chen J (2011) Antibacterial activities of blueberry and muscadine phenolic extracts. J Food Sci 76:101–105

    Article  Google Scholar 

  • Peterson JJ, Dwyer JT, Jacques PF, McCullough ML (2012) Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev 70:491–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 47:245–271

    Article  CAS  PubMed  Google Scholar 

  • Preuß A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S (2009) Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 583:1981–1986

    Article  PubMed  Google Scholar 

  • Sarrou E, Chatzopoulou P, Dimassi-Theriou K, Therios I, Koularmani A (2015) Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. J Essent Oil Res 27:487–496

    Article  CAS  Google Scholar 

  • Schenke D, Böttcher C, Scheel D (2011) Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavor accumulation in favor of pathogen defence compound production. Plant Cell Environ 34:1849–1864

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Liu Y, Gai Y, Geng J, Chen L, Liu H, Kang L, Tian Y, Li Y (2015) De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics 16:652–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Tareen MJ, Abbasi NA, Hafiz IA (2012) Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Sci Hortic 142:221–228

    Article  CAS  Google Scholar 

  • Toh H, Wang S, Chang S, Chu F (2013) Molecular cloning and characterization of flavonol synthase in Acacia confusa. Tree Genet Genomes 9:85–92

    Article  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  CAS  PubMed  Google Scholar 

  • Vrhovsek U, Masuero D, Palmieri L, Mattivi F (2012) Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J Food Compos Anal 25:9–16

    Article  CAS  Google Scholar 

  • Vyas P, Kalidindi S, Chibrikova L, Igamberdiev AU, Weber JT (2013) Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. J Agric Food Chem 61:7769–7776

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, van Tunen AJ, Halevy AH, Mol JNM, Gerats AGM (1990) Stamens and gibberellic acid in the regulation of flavonoid gene expression in the corolla of Petunia hybrida. Plant Physiol 94:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss D, van Blokland R, Kooter JM, Mol JNM, van Tunen AJ (1992) Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida. Plant Physiol 98:191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci USA 95:12432–12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y (2012) Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 39:2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Ylstra B, Touraev A, Moreno RMB, Stöger E, van Tunen AJ, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol 100:902–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Henriques R, Lin S, Niu Q, Chua N (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31040068) “Molecular mechanism of blueberry fruit coloration”. The authors are grateful to Professor Jun Zhao (Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences) for his generous gift of the pCHF3 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, H., Jia, C. et al. Cloning, characterization and functional analysis of a flavonol synthase from Vaccinium corymbosum . Trees 30, 1595–1605 (2016). https://doi.org/10.1007/s00468-016-1393-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1393-6

Keywords

Navigation