Skip to main content

Advertisement

Log in

Caffeine and neonatal acute kidney injury

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine’s effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

nAKI:

Neonatal AKI

ARs:

Adenosine receptors

CKD:

Chronic kidney disease

OS:

Oxidative stress

ERS:

Endoplasmic reticulum stress

AKT:

Protein kinase B

HSP:

Heat shock protein

ROS:

Reactive oxygen species

LPO:

Lipid peroxidation

DAMPs:

Damage-associated molecular patterns

TLRs:

Toll-like receptors

Nrf2:

Nuclear factor erythroid 2 related factor 2

HO-1:

Heme oxygenase-1

NQO-1:

NAD (P) H quinone oxidation reductase-1

GCLM:

Glutamate-cysteine ligase modifier subunit

SOD:

Superoxide dismutase

MAPK:

Mitogen-activated protein kinase

DRP1:

Dynamin-related protein 1

PGC-1α:

Peroxisome proliferator-activated receptor coactivator 1 alpha

ETC:

Electron transport chain

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase A

AMPK:

AMP-activated protein kinase

CaMK:

Calcium/calmodulin-dependent protein kinase

CREB:

CAMP receptor element binding protein

UPR:

Unfolded protein response

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

IRE1:

Inositol-requiring enzyme 1

ATF6:

Activating transcription factor 6

IL:

Interleukin

HMGB1:

High-mobility group box 1

BiP:

Binding immunoglobulin protein

NAFLD:

Non-alcoholic fatty liver disease

NLRP3:

Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3

NF-κB:

Nuclear factor-kappa B

PTEN:

Phosphatase and tensin homolog

PI3K:

Phosphatidylinositol 3-kinase

SCFAs:

Short-chain fatty acids

References

  1. Devarajan P (2022) Pathogenesis of intrinsic acute kidney injury. Curr Opin Pediatr 35:234–238

    Article  PubMed  Google Scholar 

  2. Yuan Y, Yang Y, Lei X, Dong W (2022) Caffeine and bronchopulmonary dysplasia: clinical benefits and the mechanisms involved. Pediatr Pulmonol 57:1392–1400

    Article  PubMed  Google Scholar 

  3. Du L, Tong X, Chen C, Gao X, Gagnatelli A, Li J, Santoro D, Nicolardi S, Fabbri L (2020) Caffeine citrate for apnea of prematurity: a prospective, open-label, single-arm study in Chinese neonates. Front Pediatr 8:76

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elmowafi M, Mohsen N, Nour I, Nasef N (2022) Prophylactic versus therapeutic caffeine for apnea of prematurity: a randomized controlled trial. J Matern Fetal Neonatal Med 35:6053–6061

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, Mondejar-Lopez P, Garcia-Marcos L (2020) Impact of early caffeine therapy in preterm newborns on infant lung function. Pediatr Pulmonol 55:102–107

    Article  PubMed  Google Scholar 

  6. Pakvasa MA, Saroha V, Patel RM (2018) Optimizing caffeine use and risk of bronchopulmonary dysplasia in preterm infants: a systematic review, meta-analysis, and application of grading of recommendations assessment, development, and evaluation methodology. Clin Perinatol 45:273–291

    Article  PubMed  Google Scholar 

  7. Carmody JB, Harer MW, Denotti AR, Swanson JR, Charlton JR (2016) Caffeine exposure and risk of acute kidney injury in a retrospective cohort of very low birth weight neonates. J Pediatr 172:63-68.e1

    Article  CAS  PubMed  Google Scholar 

  8. Harer MW, Askenazi DJ, Boohaker LJ, Carmody JB, Griffin RL, Guillet R, Selewski DT, Swanson JR, Charlton JR (2018) Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN Study. JAMA Pediatr 172:e180322

    Article  PubMed  PubMed Central  Google Scholar 

  9. AlGadeeb K, Qaraqei M, Algadeeb R, Faqeehi H, Al-Matary A (2021) Prediction of risk factors and outcomes of neonatal acute kidney injury. J Nephrol 34:1659–1668

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aviles-Otero N, Kumar R, Khalsa DD, Green G, Carmody JB (2019) Caffeine exposure and acute kidney injury in premature infants with necrotizing enterocolitis and spontaneous intestinal perforation. Pediatr Nephrol 34:729–736

    Article  PubMed  Google Scholar 

  11. Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L (2019) Oxidative stress as a potential target in acute kidney injury. PeerJ 7:e8046

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E (2017) Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxid Med Cell Longev 2017:6193694

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wei W, Ma N, Fan X, Yu Q, Ci X (2020) The role of Nrf2 in acute kidney injury: novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 158:1–12

    Article  CAS  PubMed  Google Scholar 

  14. Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO (2019) Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules 9:719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Endesfelder S, Strauß E, Scheuer T, Schmitz T, Bührer C (2019) Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res 20:88

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raoofi A, Delbari A, Nasiry D, Golmohammadi R, Javadinia SS, Sadrzadeh R, Mojadadi MS, Rustamzadeh A, Mousavi Khaneghah A, Ebrahimi V, Rezaie MJ (2022) Caffeine modulates apoptosis, oxidative stress, and inflammation damage induced by tramadol in cerebellum of male rats. J Chem Neuroanat 123:102116

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Lv S, Sun J, Zhang M, Zhang L, Sun Y, Zhao Z, Wang D, Zhao X, Zhang J (2022) Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Rep 27:270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J (2020) Caffeine targets SIRT3 to enhance SOD2 activity in mitochondria. Front Cell Dev Biol 8:822

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V (2021) Caffeine prevents oxalate-induced epithelial-mesenchymal transition of renal tubular cells by its anti-oxidative property through activation of Nrf2 signaling and suppression of Snail1 transcription factor. Biomed Pharmacother 141:111870

    Article  CAS  PubMed  Google Scholar 

  20. Nilnumkhum A, Kanlaya R, Yoodee S, Thongboonkerd V (2019) Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism. Cell Adh Migr 13:260–272

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khan A, Ikram M, Muhammad T, Park J, Kim MO (2019) Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro. J Clin Med 8:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vargas-Pozada EE, Ramos-Tovar E, Acero-Hernández C, Cardoso-Lezama I, Galindo-Gómez S, Tsutsumi V, Muriel P (2023) The antioxidant and anti-inflammatory activities of caffeine effectively attenuate nonalcoholic steatohepatitis and thioacetamide-induced hepatic injury in male rats. Can J Physiol Pharmacol 101:147–159

    Article  CAS  PubMed  Google Scholar 

  23. Eguchi H, Kimura R, Onuma S, Ito A, Yu Y, Yoshino Y, Matsunaga T, Endo S, Ikari A (2022) Elevation of anticancer drug toxicity by caffeine in spheroid model of human lung adenocarcinoma A549 cells mediated by reduction in claudin-2 and Nrf2 expression. Int J Mol Sci 23:15447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V (2022) Adenosine receptor antagonists: recent advances and therapeutic perspective. Eur J Med Chem 227:113907

    Article  CAS  PubMed  Google Scholar 

  25. Cao W, Yuan Y, Liu X, Li Q, An X, Huang Z, Wu L, Zhang B, Zhang A, Xing C (2019) Adenosine kinase inhibition protects against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 317:F107–F115

    Article  CAS  PubMed  Google Scholar 

  26. Rosin DL, Hall JP, Zheng S, Huang L, Campos-Bilderback S, Sandoval R, Bree A, Beaumont K, Miller E, Larsen J, Hariri G, Kaila N, Encarnacion IM, Gale JD, van Elsas A, Molitoris BA, Okusa MD (2022) Human recombinant alkaline phosphatase (Ilofotase Alfa) protects against kidney ischemia-reperfusion injury in mice and rats through adenosine receptors. Front Med (Lausanne) 9:931293

    Article  PubMed  Google Scholar 

  27. Park SW, Chen SW, Kim M, Brown KM, D’Agati VD, Lee HT (2010) Protection against acute kidney injury via A(1) adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice. J Pharmacol Exp Ther 333:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong B, Li M, Xiang S, Han L (2018) A1AR-mediated renal protection against ischemia/reperfusion injury is dependent on HSP27 induction. Urol Nephrol 50:1355–1363

    Article  CAS  Google Scholar 

  29. Puri N, Mohey V, Singh M, Kaur T, Pathak D, Buttar HS, Singh AP (2016) Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats. Naunyn Schmiedebergs Arch Pharmacol 389:361–368

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Agborbesong E, Li X (2021) The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci 22:11253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB (2020) The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules 10:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clark AJ, Parikh SM (2020) Mitochondrial metabolism in acute kidney injury. Semin Nephrol 40:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A (2020) Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 319:F1105–F1116

    Article  CAS  PubMed  Google Scholar 

  34. Gonçalves DF, de Carvalho NR, Leite MB, Courtes AA, Hartmann DD, Stefanello ST, da Silva IK, Franco JL, Soares FAA, Dalla Corte CL (2018) Caffeine and acetaminophen association: effects on mitochondrial bioenergetics. Life Sci 193:234–241

    Article  PubMed  Google Scholar 

  35. Enyart DS, Crocker CL, Stansell JR, Cutrone M, Dintino MM, Kinsey ST, Brown SL, Baumgarner BL (2020) Low-dose caffeine administration increases fatty acid utilization and mitochondrial turnover in C2C12 skeletal myotubes. Physiol Rep 8:e14340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang LT, He PC, Li AQ, Cao KX, Yan JW, Guo S, Jiang L, Yao L, Dai XY, Feng D, Xu YM, Tan N (2021) Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics. Acta Pharmacol Sin 42:2033–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamada AK, Pimentel GD, Pickering C, Cordeiro AV, Silva VRR (2022) Effect of caffeine on mitochondrial biogenesis in the skeletal muscle-a narrative review. Clin Nutr ESPEN 51:1–6

    Article  PubMed  Google Scholar 

  38. Gonçalves DF, Senger LR, Foletto JVP, Michelotti P, Soares FAA, Dalla Corte CL (2023) Caffeine improves mitochondrial function in PINK1(B9)-null mutant Drosophila melanogaster. J Bioenerg Biomembr 55:1–13

    Article  PubMed  Google Scholar 

  39. Gonçalves DF, Tassi CC, Amaral GP, Stefanello ST, Dalla Corte CL, Soares FA, Posser T, Franco JL, Carvalho NR (2020) Effects of caffeine on brain antioxidant status and mitochondrial respiration in acetaminophen-intoxicated mice. Toxicol Res (Camb) 9:726–734

    Article  PubMed  Google Scholar 

  40. Min H, Youn E, Kim J, Son SY, Lee CH, Shim YH (2020) Effects of phosphoethanolamine supplementation on mitochondrial activity and lipogenesis in a caffeine ingestion Caenorhabditis elegans model. Nutrients 12:3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang Z, Guo F, Xia Z, Liang Y, Lei S, Tan Z, Ma L, Fu P (2020) Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis. Biomed Pharmacother 126:110056

    Article  CAS  PubMed  Google Scholar 

  42. Zhao C, Yu D, He Z, Bao L, Feng L, Chen L, Liu Z, Hu X, Zhang N, Wang T, Fu Y (2021) Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med 175:236–248

    Article  CAS  PubMed  Google Scholar 

  43. Wang QL, Xing W, Yu C, Gao M, Deng LT (2021) ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol Immunol 138:99–109

    Article  CAS  PubMed  Google Scholar 

  44. He W, Qin D, Li B, Zhang H, Cheng X, Sun J, Hua J, Peng S (2021) Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs. Res Vet Sci 136:39–50

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Wang Q, Liu A, Wu Y, Liu F, Wang H, Zhu T, Fan Y, Yang B (2020) Erythropoietin derived peptide improved endoplasmic reticulum stress and ischemia-reperfusion related cellular and renal injury. Front Med (Lausanne) 7:5

    Article  ADS  PubMed  Google Scholar 

  46. Lai HJ, Zhan YQ, Qiu YX, Ling YH, Zhang XY, Chang ZN, Zhang YN, Liu ZM, Wen SH (2021) HMGB1 signaling-regulated endoplasmic reticulum stress mediates intestinal ischemia/reperfusion-induced acute renal damage. Surgery 170:239–248

    Article  PubMed  Google Scholar 

  47. Hosoi T, Toyoda K, Nakatsu K, Ozawa K (2014) Caffeine attenuated ER stress-induced leptin resistance in neurons. Neurosci Lett 569:23–26

    Article  CAS  PubMed  Google Scholar 

  48. Hu XW, Li XM, Wang AM, Fu YM, Zhang FJ, Zeng F, Cao LP, Long H, Xiong YH, Xu J, Li J (2022) Caffeine alleviates acute liver injury by inducing the expression of NEDD4L and deceasing GRP78 level via ubiquitination. Inflamm Res 71:1213–1227

    Article  CAS  PubMed  Google Scholar 

  49. Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG (2017) Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 312:L586-l598

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J (2015) Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci 22:105

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seo SY, Ryu Y (2022) Electroacupuncture stimulation of HT7 alleviates sleep disruption following acute caffeine exposure by regulating BDNF-mediated endoplasmic reticulum stress in the rat medial septum. Biomed Pharmacother 155:113724

    Article  CAS  PubMed  Google Scholar 

  52. Trychta KA, Harvey BK (2022) Caffeine and MDMA (Ecstasy) exacerbate ER stress triggered by hyperthermia. Int J Mol Sci 23:1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ni J, Jiang L, Shen G, Xia Z, Zhang L, Xu J, Feng Q, Qu H, Xu F, Li X (2021) Hydrogen sulfide reduces pyroptosis and alleviates ischemia-reperfusion-induced acute kidney injury by inhibiting NLRP3 inflammasome. Life Sci 284:119466

    Article  CAS  PubMed  Google Scholar 

  55. Huang J, Wei S, Peng Z, Xiao Z, Yang Y, Liu J, Zhang B, Li W (2022) Disulfiram attenuates lipopolysaccharide-induced acute kidney injury by suppressing oxidative stress and NLRP3 inflammasome activation in mice. J Pharm Pharmacol 74:259–267

    Article  PubMed  Google Scholar 

  56. Yin F, Zheng PQ, Zhao LQ, Wang YZ, Miao NJ, Zhou ZL, Cheng Q, Chen PP, Xie HY, Li JY, Ni JY, Zhou L, Zhang W, Wang XX, Liu J, Lu LM (2022) Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease. Acta Pharmacol Sin 43:86–95

    Article  CAS  PubMed  Google Scholar 

  57. Dai XG, Li Q, Li T, Huang WB, Zeng ZH, Yang Y, Duan ZP, Wang YJ, Ai YH (2020) The interaction between C/EBPβ and TFAM promotes acute kidney injury via regulating NLRP3 inflammasome-mediated pyroptosis. Mol Immunol 127:136–145

    Article  CAS  PubMed  Google Scholar 

  58. Liu Z, Chen Y, Niu B, Yin D, Feng F, Gu S, An Q, Xu J, An N, Zhang J, Yi J, Yin W, Qin X, Hu X (2021) NLRP3 inflammasome of renal tubular epithelial cells induces kidney injury in acute hemolytic transfusion reactions. Clin Transl Med 11:e373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li D, Li B, Rui Y, Xie H, Zhang X, Liu R, Zeng N (2022) Piperazine ferulate attenuates gentamicin-induced acute kidney injury via the NF-κB/NLRP3 pathway. Phytomedicine 99:154021

    Article  CAS  PubMed  Google Scholar 

  60. Lin Q, Li S, Jiang N, Jin H, Shao X, Zhu X, Wu J, Zhang M, Zhang Z, Shen J, Zhou W, Gu L, Lu R, Ni Z (2021) Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 17:2975–2990

    Article  CAS  PubMed  Google Scholar 

  61. Zheng Z, Xu K, Li C, Qi C, Fang Y, Zhu N, Bao J, Zhao Z, Yu Q, Wu H, Liu J (2021) NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury. Cell Death Discov 7:324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang L, Yu X, Zhang Y, Liu N, Xue X, Fu J (2022) Caffeine treatment started before injury reduces hypoxic-ischemic white-matter damage in neonatal rats by regulating phenotypic microglia polarization. Pediatr Res 92:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen S, Wu Q, Zhong D, Li C, Du L (2020) Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 21:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vargas-Pozada EE, Ramos-Tovar E, Rodriguez-Callejas JD, Cardoso-Lezama I, Galindo-Gómez S, Talamás-Lara D, Vásquez-Garzón VR, Arellanes-Robledo J, Tsutsumi V, Villa-Treviño S, Muriel P (2022) Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model. Int J Mol Sci 23:9954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao W, Ma L, Cai C, Gong X (2019) Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci 15:1571–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gong L, Pan Q, Yang N (2020) Autophagy and inflammation regulation in acute kidney injury. Front Physiol 11:576463

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang T, Feng X, Zhao Y, Zhang H, Cui H, Wei M, Yang H, Fan H (2020) Dexmedetomidine enhances autophagy via α2-AR/AMPK/mTOR pathway to inhibit the activation of NLRP3 inflammasome and subsequently alleviates lipopolysaccharide-induced acute kidney injury. Front Pharmacol 11:790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ji J, Zhou X, Xu P, Li Y, Shi H, Chen D, Li R, Shi H (2019) Deficiency of apoptosis-stimulating protein two of p53 ameliorates acute kidney injury induced by ischemia reperfusion in mice through upregulation of autophagy. J Cell Mol Med 23:2457–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Y, Wang X, Wang H, Bao J, Jia N, Huang H, Li A (2021) PTEN protects kidney against acute kidney injury by alleviating apoptosis and promoting autophagy via regulating HIF1-α and mTOR through PI3K/Akt pathway. Exp Cell Res 406:112729

    Article  CAS  PubMed  Google Scholar 

  70. Xiang Y, Fu Y, Wu W, Tang C, Dong Z (2023) Autophagy in acute kidney injury and maladaptive kidney repair. Burns Trauma 11:tkac059

    Article  PubMed  PubMed Central  Google Scholar 

  71. Livingston MJ, Shu S, Fan Y, Li Z, Jiao Q, Yin XM, Venkatachalam MA, Dong Z (2023) Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19:256–277

    Article  CAS  PubMed  Google Scholar 

  72. Hou Y, Wang S, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Yang G (2022) Patulin induces acute kidney injury in mice through autophagy-ferroptosis pathway. J Agric Food Chem 70:6213–6223

    Article  CAS  PubMed  Google Scholar 

  73. Liu W, Gan Y, Ding Y, Zhang L, Jiao X, Liu L, Cao H, Gu Y, Yan L, Wang Y, Wang L, Chen S, Shao F (2022) Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury. Ecotoxicol Environ Saf 242:113881

    Article  CAS  PubMed  Google Scholar 

  74. Mathew TS, Ferris RK, Downs RM, Kinsey ST, Baumgarner BL (2014) Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase. Biochem Biophys Res Commun 453:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu H, Song J, Zhou Y, Cao L, Gong Y, Wei Y, Yang H, Tang L (2019) Methylxanthine derivatives promote autophagy in gastric cancer cells targeting PTEN. Anticancer Drugs 30:347–355

    Article  CAS  PubMed  Google Scholar 

  76. Li YF, Ouyang SH, Tu LF, Wang X, Yuan WL, Wang GE, Wu YP, Duan WJ, Yu HM, Fang ZZ, Kurihara H, Zhang Y, He RR (2018) Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics 8:5713–5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang HQ, Song KY, Feng JZ, Huang SY, Guo XM, Zhang L, Zhang G, Huo YC, Zhang RR, Ma Y, Hu QZ, Qin XY (2022) Caffeine inhibits activation of the NLRP3 inflammasome via autophagy to attenuate microglia-mediated neuroinflammation in experimental autoimmune encephalomyelitis. J Mol Neurosci 72:97–112

    Article  CAS  PubMed  Google Scholar 

  78. Moon JH, Lee JH, Park JY, Kim SW, Lee YJ, Kang SJ, Seol JW, Ahn DC, Park SY (2014) Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy. Int J Mol Med 34:553–558

    Article  CAS  PubMed  Google Scholar 

  79. Luan Y, Ren X, Zheng W, Zeng Z, Guo Y, Hou Z, Guo W, Chen X, Li F, Chen JF (2018) Chronic caffeine treatment protects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Front Neurosci 12:301

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay BH, Summers SA, Newgard CB, Yen PM (2014) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59:1366–1380

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C, Chen S (2022) Ferroptosis: an emerging therapeutic target in stroke. J Neurochem 160:64–73

    Article  CAS  PubMed  Google Scholar 

  82. Tang C, Ma Z, Zhu J, Liu Z, Liu Y, Liu Y, Cai J, Dong Z (2019) P53 in kidney injury and repair: mechanism and therapeutic potentials. Pharmacol Ther 195:5–12

    Article  CAS  PubMed  Google Scholar 

  83. Yang H, Li R, Zhang L, Zhang S, Dong W, Chen Y, Wang W, Li C, Ye Z, Zhao X, Li Z, Wu Y, Zhang M, Liu S, Dong Z, Liang X (2019) p53-cyclophilin D mediates renal tubular cell apoptosis in ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 317:F1311–F1317

    Article  CAS  PubMed  Google Scholar 

  84. Chen G, Xue H, Zhang X, Ding D, Zhang S (2022) p53 inhibition attenuates cisplatin-induced acute kidney injury through microRNA-142-5p regulating SIRT7/NF-κB. Ren Fail 44:368–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang C, Guan Y, Zou J, Yang X, Bayliss G, Zhuang S (2022) Histone methyltransferase MLL1 drives renal tubular cell apoptosis by p53-dependent repression of E-cadherin during cisplatin-induced acute kidney injury. Cell Death Dis 13:770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Magwood AC, Mundia MM, Pladwig SM, Mosser DD, Baker MD (2020) The dichotomous effects of caffeine on homologous recombination in mammalian cells. DNA Repair (Amst) 88:102805

    Article  CAS  PubMed  Google Scholar 

  87. Li N, Zhang P, Kiang KMY, Cheng YS, Leung GKK (2018) Caffeine sensitizes U87-MG human glioblastoma cells to temozolomide through mitotic catastrophe by impeding G2 arrest. Biomed Res Int 2018:5364973

    PubMed  PubMed Central  Google Scholar 

  88. Dubrez L, Coll JL, Hurbin A, Solary E, Favrot MC (2001) Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of BAX protein. J Biol Chem 276:38980–38987

    Article  CAS  PubMed  Google Scholar 

  89. Huang J, Zhou S, Ping J, Pan X, Liang G, Xu D, Kou H, Bao C, Wang H (2012) Role of p53-dependent placental apoptosis in the reproductive and developmental toxicities of caffeine in rodents. Clin Exp Pharmacol Physiol 39:357–363

    Article  PubMed  Google Scholar 

  90. Dokunmu TM, Opara SC, Imaga NA, Awani OU, Enoma DO, Adelani BI (2023) P53 gene expression and nitric oxide levels after artemisinin-caffeine treatment in breast, lungs and liver of DMBA-induced tumorigenesis. Asian Pac J Cancer Prev 24:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kobayashi T, Iwata Y, Nakade Y, Wada T (2021) Significance of the gut microbiota in acute kidney injury. Toxins (Basel) 13:369

    Article  CAS  PubMed  Google Scholar 

  92. Iwata Y, Nakade Y, Kitajima S, Yoneda-Nakagawa S, Oshima M, Sakai N, Ogura H, Sato K, Toyama T, Yamamura Y, Miyagawa T, Yamazaki H, Hara A, Shimizu M, Furuichi K, Mita M, Hamase K, Tanaka T, Nishida M, Muramatsu W, Yamamoto H, Shichino S, Ueha S, Matsushima K, Wada T (2022) Protective effect of d-alanine against acute kidney injury. Am J Physiol Renal Physiol 322:F667–F679

    Article  CAS  PubMed  Google Scholar 

  93. Chou YT, Kan WC, Shiao CC (2022) Acute kidney injury and gut dysbiosis: a narrative review focus on pathophysiology and treatment. Int J Mol Sci 23:3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giordano L, Mihaila SM, Eslami Amirabadi H, Masereeuw R (2021) Microphysiological systems to recapitulate the gut-kidney axis. Trends Biotechnol 39:811–823

    Article  CAS  PubMed  Google Scholar 

  95. Mansour A, Mohajeri-Tehrani MR, Karimi S, Sanginabadi M, Poustchi H, Enayati S, Asgarbeik S, Nasrollahzadeh J, Hekmatdoost A (2020) Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: a pilot randomized placebo-controlled, clinical trial. Excli J 19:241–250

    PubMed  PubMed Central  Google Scholar 

  96. Barandouzi ZA, Lee J, Maas K, Starkweather AR, Cong XS (2021) Altered gut microbiota in irritable bowel syndrome and its association with food components. J Pers Med 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  97. González S, Salazar N, Ruiz-Saavedra S, Gómez-Martín M, de Los Reyes-Gavilán CG, Gueimonde M (2020) Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients 12:1287

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Gao X, Xie Q, Kong P, Liu L, Sun S, Xiong B, Huang B, Yan L, Sheng J, Xiang H (2018) Polyphenol- and caffeine-rich postfermented pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect Immun 86:e00601-e617

    Article  CAS  PubMed  Google Scholar 

  100. Nishitsuji K, Watanabe S, Xiao J, Nagatomo R, Ogawa H, Tsunematsu T, Umemoto H, Morimoto Y, Akatsu H, Inoue K, Tsuneyama K (2018) Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep 8:16173

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Song Z, Liu L, Xu Y, Cao R, Lan X, Pan C, Zhang S, Zhao H (2022) Caffeine-induced sleep restriction alters the gut microbiome and fecal metabolic profiles in mice. Int J Mol Sci 23:14837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kleber Silveira A, Moresco KS, Mautone Gomes H, da Silva MM, Kich Grun L, Pens Gelain D, de Mattos PL, Giongo A, Rodrigues De Oliveira R, Fonseca Moreira JC (2018) Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats. Phytother Res 32:2466–2474

    Article  CAS  PubMed  Google Scholar 

  103. Inkinen N, Jukarainen S, Wiersema R, Poukkanen M, Pettilä V, Vaara ST (2021) Fluid management in patients with acute kidney injury - a post-hoc analysis of the FINNAKI study. J Crit Care 64:205–210

    Article  PubMed  Google Scholar 

  104. Yu H, Yang T, Gao P, Wei X, Zhang H, Xiong S, Lu Z, Li L, Wei X, Chen J, Zhao Y, Arendshorst WJ, Shang Q, Liu D, Zhu Z (2016) Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Sci Rep 6:25746

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ming Z, Lautt WW (2010) Caffeine-induced natriuresis and diuresis via blockade of hepatic adenosine-mediated sensory nerves and a hepatorenal reflex. Can J Physiol Pharmacol 88:1115–1121

    Article  CAS  PubMed  Google Scholar 

  106. Wei X, Lu Z, Yang T, Gao P, Chen S, Liu D, Zhu Z (2018) Stimulation of intestinal Cl- secretion through CFTR by caffeine intake in salt-sensitive hypertensive rats. Kidney Blood Press Res 43:439–448

    Article  CAS  PubMed  Google Scholar 

  107. Tofovic SP, Salah EM, Jackson EK, Melhem M (2007) Early renal injury induced by caffeine consumption in obese, diabetic ZSF1 rats. Ren Fail 29:891–902

    Article  CAS  PubMed  Google Scholar 

  108. Meca R, Balbo BE, Ormanji MS, Fonseca JM, Iannuzzi LR, Santana Costa E, Onuchic LF, Heilberg IP (2019) Caffeine accelerates cystic kidney disease in a Pkd1-deficient mouse model. Cell Physiol Biochem 52:1061–1074

    Article  CAS  PubMed  Google Scholar 

  109. Al-Amin M, Kawasaki I, Gong J, Shim YH (2016) Caffeine induces the stress response and up-regulates heat shock proteins in Caenorhabditis elegans. Mol Cells 39:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Funding

This article was supported by the National Natural Science Foundation of China (81571480), Sichuan Science and Technology Department Major Science and Technology Special Project (22ZDYF1470), and Luzhou Municipal People’s Government-Southwest Medical University Science and Technology Strategic Cooperation Project (2020LZXNYDJ03).

Author information

Authors and Affiliations

Authors

Contributions

KY and WD designed the manuscript. KY wrote the manuscript. KY, JL, and TH collected the data for the manuscript. KY, JL, TH, and WD revised the manuscript. All authors contributed to the manuscript and approved the submitted version.

Corresponding author

Correspondence to Wenbin Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Liu, J., He, T. et al. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 39, 1355–1367 (2024). https://doi.org/10.1007/s00467-023-06122-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06122-6

Keywords

Navigation