Skip to main content
Log in

Blood pressure parameters affecting ventricular repolarization in obese children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Ventricular repolarization (VR) increases the risk of sudden cardiac death due to ventricular arrhythmia. We aimed to evaluate the blood pressure (BP) parameters affecting VR in obese children.

Methods

Obese (BMI ≥ 95p) and healthy children ≥ 120 cm between January 2017 and June 2019 were included. Demographic and laboratory data, peripheral and central BPs evaluated by a device capable of ambulatory blood pressure monitoring (ABPM), and pulse wave analysis were assessed. Electrocardiographic ventricular repolarization indices, left ventricular mass index (LVMI), and relative wall thickness (RWT) were calculated.

Results

A total of 52 obese and 41 control patients were included. Uric acid, triglyceride, total cholesterol, LDL, and ALT values, systolic and diastolic office BPs, 24-h, daytime and nighttime systolic and mean arterial BPs, daytime diastolic BP SDS levels, daytime and nighttime systolic loads, daytime diastolic load, 24-h, daytime and nighttime central systolic and diastolic BPs, and pulse wave velocity values were significantly higher, whereas 24-h, daytime and nighttime AIx@75 were similar between the groups. fT4 levels of obese cases were significantly lower. QTcd and Tp-ed were higher in obese patients. Although RWT was higher in obese cases, LVMI values and cardiac geometry classifications were similar. The independent factors affecting VR in obese cases were younger age and higher diastolic load at night (B =  − 2.83, p = 0.010; B = 0.257, p = 0.007, respectively).

Conclusion

Obese patients have higher peripheral and central BP, arterial stiffness, and higher VR indices that develop before an increase in LVMI. It would be useful to prevent obesity from an early age and follow up nighttime diastolic load to control VR associated sudden cardiac death in obese children.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data of this study is available as an SPSS form.

References

  1. Wójtowicz J, Łempicka A, Łuczyński W, Szczepański W, Zomerfeld A, Semeran K, Bossowski A (2017) Central aortic pressure, arterial stiffness and echocardiographic parameters of children with overweight/obesity and arterial hypertension. Adv Clin Exp Med 26:1399–1404. https://doi.org/10.17219/acem/65485

    Article  PubMed  Google Scholar 

  2. Castro JM, García-Espinosa V, Curcio S, Arana M, Chiesa P, Giachetto G, Zócalo Y, Bia D (2016) Childhood obesity associates haemodynamic and vascular changes that result in increased central aortic pressure with augmented incident and reflected wave components, without changes in peripheral amplification. Int J Vasc Med 2016:3129304. https://doi.org/10.1155/2016/3129304

    Article  PubMed  PubMed Central  Google Scholar 

  3. Olivares-López JL, Vázquez Olivares M, FletaZaragozano J, Moreno Aznar LA, Bueno Sánchez M (2005) Electrocardiographic and echocardiographic findings in children with overweight and obesity. Med Clin (Barc) 125:93–94. https://doi.org/10.1157/13076743

    Article  PubMed  Google Scholar 

  4. Hirata K, Kawakami M, O’Rourke MF (2006) Pulse wave analysis and pulse wave velocity. Circ J 70:1231–1239. https://doi.org/10.1253/circj.70.1231

    Article  PubMed  Google Scholar 

  5. Karadeniz C (2020) Importance of electrocardiographic markers in predicting cardiac events in children. Biomark Med 14:1679–1689. https://doi.org/10.2217/bmm-2020-0391

    Article  CAS  PubMed  Google Scholar 

  6. Kiess A, Körner A, Dähnert I, Vogel M, Markel F, Gebauer RA, Kiess W, Paech C (2020) Does obesity have an effect on the ECG in children? J Pediatr Endocrinol Metab 33:585–589. https://doi.org/10.1515/jpem-2019-0539

    Article  PubMed  Google Scholar 

  7. Omran J, Firwana B, Koerber S, Bostick B, Alpert MA (2016) Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis. Obes Rev 17:520–530. https://doi.org/10.1111/obr.12390

    Article  CAS  PubMed  Google Scholar 

  8. Soydinc S, Davutoglu V, Akcay M (2006) Uncomplicated metabolic syndrome is associated with prolonged electrocardiographic QTc interval and QTc dispersion. Ann Noninvasive Electrocardiol 11:313–317. https://doi.org/10.1111/j.1542-474X.2006.00123.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nigro G, Russo V, Di Salvo G, De Crescenzo I, Rago A, Perrone L, Golino P, Russo MG, Calabrò R (2010) Increased heterogenity of ventricular repolarization in obese nonhypertensive children. Pacing Clin Electrophysiol 33:1533–1539. https://doi.org/10.1111/j.1540-8159.2010.02889.x

    Article  PubMed  Google Scholar 

  10. Bhuiyan TA, Graff C, Kanters JK, Nielsen J, Melgaard J, Matz J, Toft E, Struijk JJ (2015) The T-peak-T-end interval as a marker of repolarization abnormality: a comparison with the QT interval for five different drugs. Clin Drug Investig 35:717–724. https://doi.org/10.1007/s40261-015-0328-0

    Article  CAS  PubMed  Google Scholar 

  11. Demir K, Konakçı E, Özkaya G, KasapDemir B, Özen S, Aydın M, Darendeliler F (2020) New features for Child Metrics: further growth references and blood pressure calculations. J Clin Res Pediatr Endocrinol 12:125–129. https://doi.org/10.4274/jcrpe.galenos.2019.2019.0127

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei W, Tölle M, Zidek W, van der Giet M (2010) Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit 15:225–228. https://doi.org/10.1097/MBP.0b013e328338892f

    Article  PubMed  Google Scholar 

  13. Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M et al (2010) A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens 24:498–504. https://doi.org/10.1038/jhh.2010.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007. https://doi.org/10.1038/jhh.2010.27

    Article  PubMed  Google Scholar 

  15. Hametner B, Wassertheurer S, Kropf J, Mayer C, Holzinger A, Eber B, Weber T (2013) Wave reflection quantification based on pressure waveforms alone—methods, comparison, and clinical covariates. Comput Methods Programs Biomed 109:250–259. https://doi.org/10.1016/j.cmpb.2012.10.005

    Article  PubMed  Google Scholar 

  16. Panchangam C, Merrill ED, Raghuveer G (2018) Utility of arterial stiffness assessment in children. Cardiol Young 28:362–376. https://doi.org/10.1017/S1047951117002402

    Article  PubMed  Google Scholar 

  17. Ryder JR, Dengel DR, Jacobs DR Jr, Sinaiko AR, Kelly AS, Steinberger J (2016) Relations among adiposity and ınsulin resistance with flow-mediated dilation, carotid ıntima-media thickness, and arterial stiffness in children. J Pediatr 168:205–211. https://doi.org/10.1016/j.jpeds.2015.08.034

    Article  PubMed  Google Scholar 

  18. Brady TM (2016) The role of obesity in the development of left ventricular hypertrophy among children and adolescents. Curr Hypertens Rep 18:3. https://doi.org/10.1007/s11906-015-0608-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. KasapDemir B, Soyaltin E, Alparslan C, ArslansoyuÇamlar S, Demircan T, Yavaşcan Ö, Mutlubaş F, Alaygut D, Karadeniz C (2023) Risk assessment for arrhythmia in pediatric renal transplant recipients. Exp Clin Transplant 21:28–35. https://doi.org/10.6002/ect.2020.0162

    Article  Google Scholar 

  20. Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585. https://doi.org/10.1681/ASN.2011111115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618. https://doi.org/10.1161/01.cir.55.4.613

    Article  CAS  PubMed  Google Scholar 

  22. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714. https://doi.org/10.1016/j.echo.2009.03.003

    Article  PubMed  Google Scholar 

  23. de Simone G, Daniels SR, Kimball TR, Roman MJ, Romano C, Chinali M, Galderisi M, Devereux RB (2005) Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension 45:64–68. https://doi.org/10.1161/01.HYP.0000150108.37527.57

    Article  CAS  PubMed  Google Scholar 

  24. YıldırımYıldız N, Uçar T, Ramoğlu MG, Berberoğlu M, Şıklar Z, Tutar E, Atalay S (2021) Does obesity influence ventricular repolarisation in children? Cardiol Young 31:568–576. https://doi.org/10.1017/S1047951120004369

    Article  Google Scholar 

  25. Stabouli S, Kollios K, Nika T, Chrysaidou K, Tramma D, Kotsis V (2020) Ambulatory hemodynamic patterns, obesity, and pulse wave velocity in children and adolescents. Pediatr Nephrol 35:2335–2344. https://doi.org/10.1007/s00467-020-04694-1

    Article  PubMed  Google Scholar 

  26. Shiraishi M, Murakami T, Higashi K (2020) The accuracy of central blood pressure obtained by oscillometric noninvasive method using Mobil-O-Graph in children and adolescents. J Hypertens 38:813–820. https://doi.org/10.1097/HJH.0000000000002360

    Article  CAS  PubMed  Google Scholar 

  27. Khakpour H, Vageshi M (2016) Electrocardiographic Tpeak to Tend interval: the short and long of it. Heart Rhythm 13:925–926. https://doi.org/10.1016/j.hrthm.2016.01.010

    Article  PubMed  Google Scholar 

  28. Kuznetsova TY, Korneva VA, Bryantseva EN, Barkan VS, Orlov AV, Posokhov IN, Rogoza AN, BPLab-Vasotens registry collaborators (2014) The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers. Vasc Health Risk Manag 10:247–251. https://doi.org/10.2147/VHRM.S61978

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V (2015) Arterial stiffness and SBP variability in children and adolescents. J Hypertens 33:88–95. https://doi.org/10.1097/HJH.0000000000000369

    Article  CAS  PubMed  Google Scholar 

  30. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernández-Fornoso JA, Redon J (2012) Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 60:550–555. https://doi.org/10.1161/HYPERTENSIONAHA.112.194746

    Article  CAS  PubMed  Google Scholar 

  31. Charakida M, Jones A, Falaschetti E, Khan T, Finer N, Sattar N et al (2012) Childhood obesity and vascular phenotypes: a population study. J Am Coll Cardiol 60:2643–2650. https://doi.org/10.1016/j.jacc.2012.08.1017

    Article  PubMed  Google Scholar 

  32. Stoner L, Kucharska-Newton A, Meyer ML (2020) Cardiometabolic health and carotid-femoral pulse wave velocity in children: a systematic review and meta-regression. J Pediatr 218:98–105. https://doi.org/10.1016/j.jpeds.2019.10.065

    Article  PubMed  Google Scholar 

  33. Dangardt F, Chen Y, Berggren K, Osika W, Friberg P (2013) Increased rate of arterial stiffening with obesity in adolescents: a five-year follow-up study. PLoS One 8:e57454. https://doi.org/10.1371/journal.pone.0057454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kulsum-Mecci N, Goss C, Kozel BA, Garbutt JM, Schechtman KB, Dharnidharka VR (2017) Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens (Greenwich) 19:221–226. https://doi.org/10.1111/jch.12892

    Article  PubMed  Google Scholar 

  35. Cote AT, Phillips AA, Harris KC, Sandor GG, Panagiotopoulos C, Devlin AM (2015) Obesity and arterial stiffness in children: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol 35:1038–1044. https://doi.org/10.1161/ATVBAHA.114.305062

    Article  CAS  PubMed  Google Scholar 

  36. Hudson LD, Rapala A, Khan T, Williams B, Viner RM (2015) Evidence for contemporary arterial stiffening in obese children and adolescents using pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis 241:376–386. https://doi.org/10.1016/j.atherosclerosis.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  37. Lona G, Hauser C, Köchli S, Infanger D, Endes K, Schmidt-Trucksäss A, Hanssen H (2022) Association of blood pressure, obesity and physical activity with arterial stiffness in children: a systematic review and meta-analysis. Pediatr Res 91:502–512. https://doi.org/10.1038/s41390-020-01278-5

    Article  PubMed  Google Scholar 

  38. Lurbe E, Carvajal E, Torro I, Aguilar F, Alvarez J, Redon J (2009) Influence of concurrent obesity and low birth weight on blood pressure phenotype in youth. Hypertension 53:912–917. https://doi.org/10.1161/HYPERTENSIONAHA.109.129155

    Article  CAS  PubMed  Google Scholar 

  39. Syme C, Shin J, Richer L, Gaudet D, Paus T, Pausova Z (2019) Sex differences in blood pressure hemodynamics in middle-aged adults with overweight and obesity. Hypertension 74:407–412. https://doi.org/10.1161/HYPERTENSIONAHA.119.13058

    Article  CAS  PubMed  Google Scholar 

  40. Ozkan EA, Khosroshahi HE, Serin HI et al (2015) Evaluation of QTc value and relation between QTc interval and cardiovascular risk factors in obese children. Am J Health Res 3:194–197. https://doi.org/10.11648/j.ajhr.20150303.25

    Article  Google Scholar 

  41. Yıldırım Ş, Binnetoğlu FK, Battal F, Aylanç H, Kaymaz N, Tekin M, Topaloğlu N, Aşık Z (2016) Relation between QT variables and left ventricular geometry in athletes and obese children. Acta Med Port 29:95–100. https://doi.org/10.20344/amp.6538

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by İzmir Katip Çelebi University Scientific Research Projects Coordination Unit (Project Number: 2016-GAP-TIPF-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belde Kasap Demir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasap Demir, B., Soyaltın, E., Alparslan, C. et al. Blood pressure parameters affecting ventricular repolarization in obese children. Pediatr Nephrol 38, 3359–3367 (2023). https://doi.org/10.1007/s00467-023-05971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05971-5

Keywords

Navigation