Skip to main content
Log in

Novel insights into the physiology of renalase and its role in hypertension and heart disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renalase is an amine oxidase expressed in kidney, heart, liver, and brain that metabolizes catecholamines. Tissue and plasma levels are decreased in models of hypertension and chronic kidney disease. Its expression is modulated by salt intake, and urinary renalase may regulate catecholamines levels and effect renal sodium and phosphate transport. The renalase knockout mouse is hypertensive in the absence of significant changes in renal function. Sympathetic tone is increased as evidenced by elevated plasma and urine catecholamines. Studies in humans with resistant hypertension indicate that plasma renalase levels are inversely associated with systolic blood pressure. Additionally, a functional mutation in renalase (Glu37Asp), known to be associated with essential hypertension, also predicts more severe cardiac hypertrophy and dysfunction. Lastly, a single dose of recombinant renalase administered subcutaneously to rats with chronic kidney disease or to Spontaneously Hypertensive Stroke Prone rats significantly decreases blood pressure for more than 24 h. Available data suggest that renalase deficiency is associated with increased sympathetic tone and resistant hypertension, and recombinant renalase is a potent antihypertensive agent that may provide a valuable option for treating hypertension in chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016

    Article  PubMed  Google Scholar 

  2. Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537

    Article  PubMed  Google Scholar 

  3. Hostetter TH (2004) Chronic kidney disease predicts cardiovascular disease. N Eng J Med 351:1344–1346

    Article  CAS  Google Scholar 

  4. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Eng J Med 351:1296–1305

    Article  CAS  Google Scholar 

  5. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, Zelenkofske S, Leimberger JD, Califf RM, Pfeffer MA (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Eng J Med 351:1285–1295

    Article  CAS  Google Scholar 

  6. Go AS, Lo JC (2006) Epidemiology of non-dialysis-requiring chronic kidney disease and cardiovascular disease. Curr Opin Nephrol Hypertens 15:296–302

    Article  PubMed  Google Scholar 

  7. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20:933–939

    Article  PubMed  Google Scholar 

  8. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115:1275–1280

    PubMed  CAS  Google Scholar 

  9. Desir GV (2009) Regulation of blood pressure and cardiovascular function by renalase. Kidney Int 76:366–370

    Article  PubMed  CAS  Google Scholar 

  10. Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, Schlaich M (2010) Renalase, a novel soluble FAD-dependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry 15:234–236

    Article  PubMed  CAS  Google Scholar 

  11. Feng W, Nian-song W, Tao X, Yang C, Hai-yan X (2009) The cloning and expression of renalase and the preparation of its monoclonal antibody. J Shanghai Jiaotong Univ Sci 14:376–379

    Article  Google Scholar 

  12. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV (2008) Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation 117:1277–1282

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Qi S, Cheng W, Li L, Wang F, Li YZ, Zhang SP (2008) Identification, expression and tissue distribution of a renalase homologue from mouse. Mol Biol Rep 35:613–620

    Article  PubMed  CAS  Google Scholar 

  14. Boomsma F, Tipton KF (2007) Renalase, a catecholamine-metabolising enzyme? J Neural Transm 114:775–776

    Article  PubMed  CAS  Google Scholar 

  15. Desir G, Wang P, Velazquez H (2009) On the mechanisms mediating the cardioprotective effect of renalase. J Am Soc Nephrol Abstracts Issue 20:2009. Accessed online at http://www.asn-online.org/education_and_meetings/renal_week/archives/

  16. Farzaneh-Far RM, Desir GV, Schiller NB, Whooley MA (2010) A functional mutation in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the Heart and Soul Study. PLoS ONE 5(10):e13496

    Article  PubMed  Google Scholar 

  17. Desir GV (2008) Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease. Curr Opin Nephrol Hypertens 17:181–185

    Article  PubMed  CAS  Google Scholar 

  18. Wang F, N-s W, Xing T, Cao Y, H-y X (2009) The cloning and expression of renalase and the preparation of its monoclonal antibody. J Shanghai Jiaotong Univ Sci 14:376–379

    Article  Google Scholar 

  19. Schlaich M, Socratous F, Eikelis N, Chopra R, Lambert G, Hennebry S (2010) Renalase plasma levels are associated with systolic blood pressure in patients with resistant hypertension: 9C.01. J Hypertens 28:e437 410.1097/1001.hjh.0000379519.0000382971.0000379502

  20. Xu B, Gu R (2010) Renalase deficiency in heart failure: a novel mechanism underlying circulating norepinephrine accumulation. European Society of Cardiology Congress Accessed online at http://spo.escardio.org/eslides/view.aspx?eevtid=40&fp=P2485

  21. Pestana M, Sampaio-Maia B, Moreira-Rodrigues M, Fernandes-Cerqueira C, Quelhas-Santos J (2009) Expression of renalase in a 3/4 nephrectomy rat model. NDT Plus 2:ii55-

    Google Scholar 

  22. Ghosh SS, Gehr TWB, Sica DA, Masilamani S, Fakhry I, Wang R, McGuire E, Ghosh S (2006) Renalase regulates blood pressure in salt sensitive Dahl rats. J Am Soc Nephrol 17:208A

    Google Scholar 

  23. Wu Y, Velazquez H, Xu J, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell R, Pestana M, Giordano G, Desir G (2010) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int. doi:10.1038/ki.2010.488

    Google Scholar 

  24. Desir GV, Wu Y, Wang P, Xu J, Velazquez H (2008) Renalase deficiency increases sympathetic tone and causes hypertension. J Am Soc Nephrol Abstracts Issue 2008. Accessed online at http://www.asn-online.org/education_and_meetings/renal_week/archives/

  25. Desir G, Giordano F, Liu D, Wu Y (2009) Renalase deficiency aggravates cardiac ischemia and myocardial infarction. NDT Plus 2:ii55

    Google Scholar 

  26. Carey RM (2001) Theodore cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38:297–302

    Article  PubMed  CAS  Google Scholar 

  27. Greger R (2000) Physiology of renal sodium transport. Am J Med Sci 319:51–62

    Article  PubMed  CAS  Google Scholar 

  28. Pestana M, Jardim H, Correia F, Vieira-Coelho MA, Soares-da-Silva P (2001) Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension. Nephrol Dial Transplant 16(Suppl 1):53–59

    Article  PubMed  CAS  Google Scholar 

  29. Ferreira A, Bettencourt P, Pimenta J, Frioes F, Pestana M, Soares-da-Silva P, Cerqueira-Gomes M (2002) The renal dopaminergic system, neurohumoral activation, and sodium handling in heart failure. Am Heart J 143:391–397

    Article  PubMed  CAS  Google Scholar 

  30. Ferro A (2003) Renal dopamine receptors and hypertension. J Hypertens 21:37–38

    Article  PubMed  CAS  Google Scholar 

  31. Jose PA, Eisner GM, Felder RA (2003) Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens 12:189–194

    Article  PubMed  CAS  Google Scholar 

  32. Wilk S, Mizoguchi H, Orlowski M (1978) gamma-Glutamyl dopa: a kidney-specific dopamine precursor. J Pharmacol Exp Ther 206:227–232

    PubMed  CAS  Google Scholar 

  33. Wang ZQ, Way D, Shimizu K, Fong F, Trigg L, McGrath BP (1993) Beneficial acute effects of selective modulation of renal dopamine system by gamma-L-glutamyl-L-dopa in rabbits with congestive heart failure. J Cardiovas Pharmacol 21:1004–1011

    Article  CAS  Google Scholar 

  34. Barthelmebs M, Caillette A, Ehrhardt JD, Velly J, Imbs JL (1990) Metabolism and vascular effects of gamma-L-glutamyl-L-dopa on the isolated rat kidney. Kidney Int 37:1414–1422

    Article  PubMed  CAS  Google Scholar 

  35. Cummings J, Matheson LM, Maurice L, Smyth JF (1990) Pharmacokinetics, bioavailability, metabolism, tissue distribution and urinary excretion of gamma-L-glutamyl-L-dopa in the rat. J Pharm Pharmacol 42:242–246

    Article  PubMed  CAS  Google Scholar 

  36. Worth DP, Harvey JN, Brown J, Lee MR (1985) gamma-L-Glutamyl-L-dopa is a dopamine pro-drug, relatively specific for the kidney in normal subjects. Clin Sci Lond 69:207–214

    PubMed  CAS  Google Scholar 

  37. MacDonald TM, Jeffrey RF, Lee MR (1989) The renal and haemodynamic effects of a 10 h infusion of glutamyl-L-dopa in normal man. Br J Clin Pharmacol 27:811–822

    PubMed  CAS  Google Scholar 

  38. Seri I, Kone BC, Gullans SR, Aperia A, Brenner BM, Ballermann BJ (1990) Influence of Na+ intake on dopamine-induced inhibition of renal cortical Na(+)-K(+)-ATPase. Am J Physiol 258:F52–F60

    PubMed  CAS  Google Scholar 

  39. Oates NS, Ball SG, Perkins CM, Lee MR (1979) Plasma and urine dopamine in man given sodium chloride in the diet. Clin Sci Lond 56:261–264

    PubMed  CAS  Google Scholar 

  40. Soares-da-Silva P (1993) Enhanced protein kinase C mediated inhibition of renal dopamine synthesis during high sodium intake. Biochem Pharmacol 45:1791–1800

    Article  PubMed  CAS  Google Scholar 

  41. Chan YL (1976) Cellular mechanisms of renal tubular transport of I-dopa and its derivatives in the rat: microperfusion studies. J Pharmacol Exp Ther 199:17–24

    PubMed  CAS  Google Scholar 

  42. Sampaio-Maia B, Serrao P, Guimaraes JT, Vieira-Coelho MA, Pestana M (2005) Renal dopaminergic system activity in the rat remnant kidney. Nephron Exp Nephrol 99:e46–e55

    Article  PubMed  CAS  Google Scholar 

  43. Sampaio-Maia B, Moreira-Rodrigues M, Pestana M (2006) Role of chronic inhibition of dopamine-metabolizing enzymes in the regulation of renal sodium and phosphate excretion in the rat remnant kidney. Nephron Physiol 103:p14–p24

    Article  PubMed  CAS  Google Scholar 

  44. Desir G, Tang L, Wang P, Li G, Velazquez H (2010) Antihypertensive effect of recombinant renalase in spontaneously hypertensive stroke prone (SHRSP) Rats. J Am Soc Nephrol 21:748A

    Google Scholar 

  45. Zhao Q, Fan Z, He J, Chen S, Li H, Zhang P, Wang L, Hu D, Huang J, Qiang B, Gu D (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med 85:877–885

    Article  PubMed  CAS  Google Scholar 

  46. Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLoS ONE 5:e13496

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support from NIH (1R01DK081037, 1RC1DK086402, 1RC1DK086465)

Conflicts of interest

Gary V Desir: Inventor of patent #US 7,700,095 B2: “Detection, Isolation and Uses of Renalase (Monoamine Oxidase C).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Desir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desir, G. Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27, 719–725 (2012). https://doi.org/10.1007/s00467-011-1828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1828-7

Keywords

Navigation