Skip to main content

Advertisement

Log in

Renin–angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Branching morphogenesis of the ureteric bud (UB) is a key developmental process that controls organogenesis of the entire metanephros. Notably, aberrant UB branching may result in a spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Genetic, biochemical and physiological studies have demonstrated that the renin–angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans cause diverse types of CAKUT which include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, abnormal glomerulogenesis and urinary concentrating defect. Despite widely accepted role of the RAS in metanephric kidney and renal collecting system (ureter, pelvis, calyces and collecting ducts) development, the mechanisms by which an intact RAS exerts its morphogenetic actions are incompletely defined. Emerging evidence indicates that defects in UB branching morphogenesis may be causally linked to the pathogenesis of renal collecting system anomalies observed under conditions of aberrant RAS signaling. This review describes the role of the RAS in UB branching morphogenesis and highlights emerging insights into the cellular and molecular mechanisms whereby RAS regulates this critical morphogenetic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. North American Pediatric Renal Trials and Collaborative Studies (2008) NAPRTCS Annual report

  2. Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421

    CAS  PubMed  Google Scholar 

  3. Bridgewater D, Rosenblum ND (2009) Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24:1611–1619

    Article  PubMed  Google Scholar 

  4. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab invest 75:745–753

    CAS  PubMed  Google Scholar 

  5. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi N, Lopez ML, JE Co whig Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132

    Article  PubMed  Google Scholar 

  7. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab invest 7:953–965

    Google Scholar 

  8. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695

    Article  CAS  PubMed  Google Scholar 

  11. Gribouval O, Gonzales M, Neuhaus T (2005) Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968

    Article  CAS  PubMed  Google Scholar 

  12. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Google Scholar 

  13. Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150

    CAS  PubMed  Google Scholar 

  14. Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55

    CAS  PubMed  Google Scholar 

  15. Cebrián C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608

    Article  PubMed  Google Scholar 

  16. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A. Ret Nat Genet 32:109–115

    Article  CAS  PubMed  Google Scholar 

  17. Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089

    Article  CAS  PubMed  Google Scholar 

  18. Sakurai H, Nigam S (1998) In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney Int 54:14–26

    Article  CAS  PubMed  Google Scholar 

  19. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    Article  CAS  PubMed  Google Scholar 

  20. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39

    Article  CAS  PubMed  Google Scholar 

  21. Rosenblum ND (2008) Developmental biology of the human kidney. Semin Fetal Neonatal Med 13:125–132

    Article  PubMed  Google Scholar 

  22. Song R, Yosypiv IV (2010) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. doi:https://doi.org/10.1007/s00467-010-1629-4

  23. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  24. Cacalano G, Fariñas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  26. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395

    CAS  PubMed  Google Scholar 

  27. Grieshammer U, Ma L, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717

    Article  CAS  PubMed  Google Scholar 

  28. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  CAS  PubMed  Google Scholar 

  29. Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:1–12

    Article  CAS  Google Scholar 

  30. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11

    Article  CAS  PubMed  Google Scholar 

  32. Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266:285–298

    Article  CAS  PubMed  Google Scholar 

  34. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477

    Article  CAS  PubMed  Google Scholar 

  35. Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185

    Article  CAS  PubMed  Google Scholar 

  37. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:1–11

    Article  CAS  Google Scholar 

  38. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Z, Pascuet E, Hueber PA, Chu L, Bichet DG, Lee TC, Threadgill DW, Goodyer P (2010) Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol 21:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136:161–171

    Article  CAS  PubMed  Google Scholar 

  41. Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  42. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  43. Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 120:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain S, Encinas JEM, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D'Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, Hadari YR, Schlessinger J, Lax I (2001) Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol 21:4177–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325

    Article  CAS  PubMed  Google Scholar 

  49. Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science STKE 228:1–5

    Google Scholar 

  50. Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP, Hains D, Kish K, Becknell B, Zhang J, Bertram JF, Wang F, Bates CM (2009) Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol 297:F1208–F1219

    CAS  Google Scholar 

  51. Pepicelli CV, Kispert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198

    Article  CAS  PubMed  Google Scholar 

  52. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136

    Article  CAS  PubMed  Google Scholar 

  53. Kuure S, Chi X, Lu B, Costantini F (2010) The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 137:1975–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. MaassenVanDenBrink A, Vries R, Saxena PR, Schalekamp MA, Danser AH (1999) Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 44:407–415

    Article  CAS  PubMed  Google Scholar 

  55. Kobori H, Ozawa Y, Suzaki Y, Prieto-Carrasquero MC, Nishiyama A, Shoji T, Cohen EP, Navar LG (2006) Intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550

    Article  CAS  PubMed  Google Scholar 

  56. Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278

    CAS  PubMed  Google Scholar 

  57. Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362

    Article  CAS  PubMed  Google Scholar 

  58. Santos RA, Simoes E, Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206

    Article  CAS  PubMed  Google Scholar 

  60. Niimura F, Okubo S, Fogo A, Ichikawa I (1997) Temporal and spatial expression pattern of the angiotensinogen gene in mice and rats. Am J Physiol 272:R142–R147

    Article  CAS  PubMed  Google Scholar 

  61. Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37

    Article  CAS  PubMed  Google Scholar 

  62. Iosipiv SM (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207

    CAS  Google Scholar 

  63. Schutz S, Le Moullec J-M, Corvol P, Gasc JM (1996) Early expression of all the components of the renin–angiotensin system in human development. Am J Pathol 149:2067–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383

    Article  CAS  PubMed  Google Scholar 

  65. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858

    CAS  PubMed  Google Scholar 

  66. Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356

    CAS  Google Scholar 

  67. Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840

    Article  CAS  PubMed  Google Scholar 

  68. Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374

    Article  CAS  PubMed  Google Scholar 

  69. Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286

    Article  CAS  PubMed  Google Scholar 

  70. Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668

    CAS  PubMed  Google Scholar 

  71. Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159

    Article  CAS  PubMed  Google Scholar 

  73. Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV (2010) Angiotensin II AT2 Receptor Regulates Ureteric Bud Morphogenesis. Am J Physiol 298:F807–F817

    Article  CAS  Google Scholar 

  74. Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin–angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492

    Article  CAS  PubMed  Google Scholar 

  76. Guron G, Adams MA, Sundelin B, Friberg P (1997) Neonatal angiotensin-converting enzyme inhibition in the rat induces persistent abnormalities in renal function and histology. Hypertension 29:91–97

    Article  CAS  PubMed  Google Scholar 

  77. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110–F115

    Google Scholar 

  78. Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592

    Article  CAS  PubMed  Google Scholar 

  79. Guron G, Marcussen N, Nilsson A, Sundelin B, Friberg P (1999) Postnatal time frame for renal vulnerability to enalapril in rats. J Am Soc Nephrol 10:1550–1560

    CAS  PubMed  Google Scholar 

  80. Guron G, Nilsson A, Nitescu N, Nielsen S, Sundelin B, Frøkiaer J, Friberg P (1999) Mechanisms of impaired urinary concentrating ability in adult rats treated neonatally with enalapril. Acta Physiol Scand 165:103–112

    Article  CAS  PubMed  Google Scholar 

  81. Cupples WA, Sakai T, Marsh DJ (1988) Angiotensin II and prostaglandins in control of vasa recta blood flow. Am J Physiol 254:F417–F424

    Article  CAS  PubMed  Google Scholar 

  82. Moore LC, Marsh DJ (1980) How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am J Physiol 239:F57–F71

    CAS  PubMed  Google Scholar 

  83. Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA (2002) Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39:470–473

    Article  CAS  PubMed  Google Scholar 

  84. Weiner ID, New AR, Milton AE, Tisher CC (1995) Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am J Physiol 269:F730–F738

    CAS  PubMed  Google Scholar 

  85. Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H+−ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051

    Article  CAS  PubMed  Google Scholar 

  86. Wei Y, Wang W (2003) Angiotensin II stimulates basolateral K channels in rat cortical collecting ducts. Am J Physiol 284:F175–F181

    CAS  Google Scholar 

  87. Gembardt F, Heringer-Walther S, van Esch JH, Sterner-Kock A, van Veghel R, Le TH, Garrelds IM, Coffman TM, Danser AH, Schultheiss HP, Walther T (2008) Cardiovascular phenotype of mice lacking all three subtypes of angiotensin II receptors. FASEB J 22:3068–3077

    Article  CAS  PubMed  Google Scholar 

  88. Oliverio MI, Delnomdedieu M, Best CF, Li P, Morris M, Callahan MF, Johnson GA, Smithies O, Coffman TM (2000) Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol 278:F75–F82

    CAS  Google Scholar 

  89. Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin–angiotensin system. J Am Soc Nephrol 17:2253–2263

    Article  CAS  PubMed  Google Scholar 

  90. MacDonald MS, Emery JL (1959) The late intrauterine and postnatal development of human renal glomeruli. J Anat 93:331–340

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Davies JA, Bard JB (1996) Inductive interactions between the mesenchyme and the ureteric bud. Exp Nephrol 4:77–85

    CAS  PubMed  Google Scholar 

  92. Aperia A, Herin P (1975) Development of glomerular perfusion rate and nephron filtration rate in rats 17–60 days old. Am J Physiol 228:1319–1325

    Article  CAS  PubMed  Google Scholar 

  93. Vize PD, Woolf AS, Bard JBL (2003) The Kidney. Elsevier Science, London

    Google Scholar 

  94. Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852

    Article  CAS  PubMed  Google Scholar 

  95. Yosypiv IV, Schroeder M, El-Dahr SS (2006) AT1R-EGFR crosstalk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 17:1005–1014

    Article  CAS  PubMed  Google Scholar 

  96. Song R, Van Buren T, Yosypiv IV (2010) Histone deacetylases are critical regulators of the renin–angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 67:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465

    Article  CAS  PubMed  Google Scholar 

  98. Yosypiv IV, Boh MK, Spera M, El-Dahr SS (2008) Downregulation of Spry-1, an inhibitor of GDNF/Ret, as a mechanism for angiotensin II-induced ureteric bud branching. Kidney Int 74:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  Google Scholar 

  100. Schuchardt A, D'Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    CAS  PubMed  Google Scholar 

  101. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726

    Article  CAS  PubMed  Google Scholar 

  103. Miura S, Matsuo Y, Kiya Y, Karnik SS, Saku K (2010) Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 391:85–90

    Article  CAS  PubMed  Google Scholar 

  104. Song R, Spera M, Garrett C, Yosypiv IV (2010) Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis. Mech Dev 127:21–27

    Article  CAS  PubMed  Google Scholar 

  105. Besset V, Scott RP, Ibáñez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275:39159–39166

    Article  CAS  PubMed  Google Scholar 

  106. Kim D, Dressler GR (2007) PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 307:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128:4329–4338

    CAS  PubMed  Google Scholar 

  108. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  CAS  PubMed  Google Scholar 

  109. Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (1998) Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells. Mol Endocrinol 12:536–543

    Article  CAS  PubMed  Google Scholar 

  110. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    Article  CAS  PubMed  Google Scholar 

  111. Arnould C, Lelièvre-Pégorier M, Ronco P, Lelongt B (2009) MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J Am Soc Nephrol 20:2171–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Criendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276:48269–48275

    Article  CAS  PubMed  Google Scholar 

  113. Michael L, Davies JA (2004) Pattern and regulation of cell proliferation during murine ureteric bud development. J Anat 204:241–255

    Article  PubMed  PubMed Central  Google Scholar 

  114. Watanabe G, Lee RJ, Albanese C, Rainey WE, Batle D, Pestell RG (1996) Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 271:22570–22577

    Article  CAS  PubMed  Google Scholar 

  115. Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. BioEssays 30:15–24

    Article  CAS  PubMed  Google Scholar 

  116. Nottke A, Colaiácovo MP, Shi Y (2009) Developmental roles of the histone lysine demethylases. Development 136:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pentz ES, Lopez ML, Cordaillat M, Gomez RA (2008) Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol 294:H699–H707

    CAS  Google Scholar 

  120. Ogryzko VV, Schiltz RL, Russanova V, Hioward BH (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    Article  CAS  PubMed  Google Scholar 

  121. Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez ML (2009) CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol 296:H1255–H1262

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosypiv, I.V. Renin–angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms. Pediatr Nephrol 26, 1499–1512 (2011). https://doi.org/10.1007/s00467-011-1820-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1820-2

Keywords

Navigation