Skip to main content

Advertisement

Log in

Reverse iontophoresis: a non-invasive technique for measuring blood urea level

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Monitoring of the urea level of patients with insufficient kidney function requires repetitive blood sampling. The potentially painful nature of blood sampling and the difficulty of venous access, particularly in premature neonates, as well as possible complications of needle injuries, create many disadvantages. A non-invasive technique needs to be developed for monitoring the urea level for these patients. Reverse iontophoresis has recently gained importance and the possibility of extracting some compounds from body fluids using reverse iontophoresis has been reported in the literature. Moreover, a small, watch-type device has been developed for the determination of blood glucose levels using a similar approach. The aim of the current study was to investigate the possibility of extracting urea from blood through skin using reverse iontophoresis to monitor blood urea levels without taking a blood sample. In vitro iontophoresis studies have indicated that urea may be successfully transferred through the full thickness of human skin. The reverse iontophoresis technique was applied to 17 patients with kidney insufficiency and urea was successfully extracted through their skin into the collection solution. A high correlation (r 2=0.878) between urea concentrations in collection solutions and urea levels in the blood was observed. These results suggest that it is possible to make a watch-type device for monitoring blood urea levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Schaubel DE, Morrison HI, Desmeules M, Parsons D, Fenton SSA (1998) End-stage renal diseases projections for Canada to 2005 using Poisson and Markov models. Int J Epidemiol 27:274–281

    Article  CAS  PubMed  Google Scholar 

  2. Chertow GM, Lazarus JM (1996) Intensity of dialysis in established acute renal failure. Semin Dial 9:476–480

    Google Scholar 

  3. Forni LG, Hilton PJ (1997) Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med 336:1303–1309

    Article  CAS  PubMed  Google Scholar 

  4. Mehta R (1996) Modalities of dialysis in acute renal failure. Semin Dial 9:469–475

    Google Scholar 

  5. Swann RC, Merrill JP (1953) The clinical course of acute renal failure. Medicine (Baltimore) 32:215–283

    Google Scholar 

  6. Goeree R, Manalich J, Grootendorst P, Beecroft ML, Churchill DN (1996) Cost analysis of dialysis treatments for end-stage renal diseases. Clin Invest Med 18:455–464

    Google Scholar 

  7. Raine AEG, Margreiter R, Brunner FP (1992) Report on management of renal failure in Europe, XXII, 1991. Nephrol Dial Transplant 71 [Suppl 2]:7–35

  8. Pastan S, Bailey J (1998) Dialysis therapy. N Engl J Med 338:1428–1437

    Article  CAS  PubMed  Google Scholar 

  9. Ad Hoc Committee on Nephrology Manpower Needs (1997) Estimating workforce and training requirements for nephrologists through the year 2010. J Am Soc Nephrol 8 [Suppl 9]:1–32

  10. Winston JA, Klotman PE (1996) Are we missing and epidemic of HIV associated nephropathy? J Am Soc Nephrol 7:1–7

    Google Scholar 

  11. D'Agati F, Appel GB (1997) HIV infection and the kidney. J Am Soc Nephrol 8:138–152

    CAS  PubMed  Google Scholar 

  12. Gotch FA, Sargent JA (1985) A mechanistic analysis of the national cooperative dialysis study (NCDS). Kidney Int 28:526–534

    CAS  PubMed  Google Scholar 

  13. Owen WF, Lew NL, Liu Y, Lowri EG, Lazarus JM (1993) The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329:1001–1006

    PubMed  Google Scholar 

  14. Bent P, Tan HK, Bellomo R, Buckmaster J, Deoolan L, Hard G, Silvester W, Gutteridge G, Matalanis G, Raman J, Rosalion A, Buxton FB (2001) Early and intensive continuous hemofiltration for severe renal failure after cardiac surgery. Ann Thorac Surg 71:832–837

    Article  CAS  PubMed  Google Scholar 

  15. Hogan JM (1999) Neonatal vascular catheters and their complications. Radiol Clin North Am 37:1109–1125

    CAS  PubMed  Google Scholar 

  16. Loisel DB, Smith MM, MacDonald MG (1996) Intravenous access in newborn infants impact of extended umbilical venous catheter use on requirements for peripheral venous lines. J Perinatol 16:461

    CAS  PubMed  Google Scholar 

  17. Barret DA, Rutter N (1994) Transdermal delivery and the premature neonate. Crit Rev Ther Drug Carrier Syst 11:1–30

    PubMed  Google Scholar 

  18. Sekkat N, Naik A, Kalia YN, Glikfeld P, Guy RH (2002) Reverse iontophoretic monitoring in premature neonates: feasibility and potential. J Control Release 81:83–89

    Article  CAS  PubMed  Google Scholar 

  19. Merino V, Kalia YN, Guy RH (1997) Transdermal therapy and diagnosis by iontophoresis. Trends Biotechnol 15:288–290

    Article  CAS  PubMed  Google Scholar 

  20. Tamada JA, Garg S, Jovannovic L, Pitzer KR, Fermi S, Potts RO (1999) Noninvasive glucose monitoring comprehensive clinical results. J Am Med Assoc 282:1839–1844

    Article  CAS  Google Scholar 

  21. Pitzer KR, Desai S, Dunn T, Edelman S, Jayalacshmi Y, Kenedi J, Tamada JA, Potts RO (2001) Detection of hypoglycemia with the Gluco Watch Biographer. Diabetes Care 24:881–885

    CAS  PubMed  Google Scholar 

  22. Glikfeld P, Hinz RS, Guy RH (1989) Noninvasive sampling of biological fluids by iontophoresis. Pharm Res 6:988–990

    Article  CAS  PubMed  Google Scholar 

  23. Merino V, Lopez A, Hochstrasser D, Guy RH (1999) Noninvasive sampling of phenylalanine by reverse iontophoresis. J Control Release 61:65–69

    Article  CAS  PubMed  Google Scholar 

  24. Numajiri S, Sugibayashi K, Morimoto Y (1993) Noninvasive sampling of lactic acid ions by iontophoresis using chloride ion in the body as an internal standard. J Pharm Biomed Anal 11:903–909

    Article  CAS  PubMed  Google Scholar 

  25. Santi P, Guy RH (1996) Reverse iontophoresis—parameters determining electroosmotic flow. I. pH and ionic strength. J Control Release 38:159–165

    Article  CAS  Google Scholar 

  26. Santi P, Guy RH (1996) Reverse iontophoresis—parameters determining electroosmotic flow. II. Electrode chamber formulation. J Control Release 42:29–36

    Article  CAS  Google Scholar 

  27. Green PG, Hinz RH, Cullander C, Yamane G, Guy RH (1991) Iontophoretic delivery of amino acids and amino acid derivatives across the skin in-vitro. Pharm Res 8:113–119

    Google Scholar 

  28. Degım IT, Pugh WJ, Hadgraft J (1998) Effect of ion complexants on the iontophoresis of salbutamol. Int J Pharm 167:229–231

    Article  Google Scholar 

  29. Song Y, Li K, Peck KD, Zhu H, Ghanem AH, Higuchi WI (2002) Human epidermal membrane constant conductance iontophoresis: alternating current to obtain reproducible enhanced permeation and reduced lag times of a nonionic polar permeant. Int J Pharm 232:45–57

    Article  CAS  PubMed  Google Scholar 

  30. Li SK, Ghanem AH, Peck KD, Higuchi WI (1998) Characterization of the transport pathways induced during low to moderate voltage iontophoresis in human epidermal membrane. J Pharm Sci 87:40–48

    Article  CAS  PubMed  Google Scholar 

  31. Li SK, Suh W, Parikh HH, Ghanem AH, Mehta SC, Peck KD, Higuchi WI (1998) Lag time data for characterizing the pore pathway of intact and chemically pretreated human epidermal membrane. Int J Pharm 170:93–108

    Article  CAS  Google Scholar 

  32. Li SK, Ghanem AH, Peck KD, Higuchi WI (1999) Pore induction in human epidermal membrane during low to moderate iontophoresis. J Pharm Sci 88:419–427

    Article  CAS  PubMed  Google Scholar 

  33. Marro D, Guy RH, Delgado-Charro MB (2001) Characterisation of the iontophoretic permselectivity properties of human and pig skin. J Control Release 70:213–217

    Article  CAS  PubMed  Google Scholar 

  34. Tomohira Y, Machida Y, Onishi H, Nagai T (1997) Iontophoretic transdermal absorption of insulin and calcitonin in rats with newly-devised swithing technique and addition of urea. Int J Pharm 155:231–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of a master′s degree thesis of S. Ilbasmis. The authors would like to thank the Hasvak hemodialysis center for their kind help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Tuncer Degim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degim, I.T., Ilbasmis, S., Dundaroz, R. et al. Reverse iontophoresis: a non-invasive technique for measuring blood urea level. Pediatr Nephrol 18, 1032–1037 (2003). https://doi.org/10.1007/s00467-003-1217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1217-y

Keywords

Navigation