Skip to main content
Log in

HHT-\(\alpha \) and TR-BDF2 schemes for dynamic contact problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work focuses on the numerical performance of HHT-\(\alpha \) and TR-BDF2 schemes for dynamic frictionless unilateral contact problems between an elastic body and a rigid obstacle. Nitsche’s method, the penalty method, and the augmented Lagrangian method are considered to handle unilateral contact conditions. Analysis of the convergence of an opposed value of the parameter \(\tilde{\alpha }\) for the HHT-\(\alpha \) method is achieved. The mass redistribution method has also been tested and compared with the standard mass matrix. Numerical results for 1D and 3D benchmarks show the functionality of the combinations of schemes and methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Algorithm 1
Fig. 19

Similar content being viewed by others

References

  1. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Meth Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-X

    Article  MathSciNet  Google Scholar 

  2. Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Meth Appl Mech Eng 158(3–4):269–300. https://doi.org/10.1016/S0045-7825(97)00256-9

    Article  MathSciNet  Google Scholar 

  3. Bank RE, Coughran WM, Fichtner W, Grosse EH, Rose DJ, Smith RK (1985) Transient simulation of silicon devices and circuits. IEEE Trans Comput-Aid Des Integr Circuits Syst 4(4):436–451. https://doi.org/10.1109/TCAD.1985.1270142

    Article  Google Scholar 

  4. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83(31–32):2513–2524. https://doi.org/10.1016/j.compstruc.2005.08.001

    Article  MathSciNet  Google Scholar 

  5. Bathe KJ, Wilson EL (1974) NONSAP: a nonlinear structural analysis program. Nucl Eng Des 29(2):266–293. https://doi.org/10.1016/0029-5493(74)90128-9

    Article  Google Scholar 

  6. Beaude L, Chouly F, Laaziri M, Masson R (2023) Mixed and nitsche’s discretizations of coulomb frictional contact-mechanics for mixed dimensional poromechanical models. Comput Meth Appl Mech Eng 413:116124. https://doi.org/10.1016/j.cma.2023.116124

    Article  MathSciNet  Google Scholar 

  7. Bretin É, Renard Y (2020) Stable IMEX schemes for a Nitsche-based approximation of elastodynamic contact problems. Selective mass scaling interpretation. SMAI J Comput Math 6:159–185. https://doi.org/10.5802/smai-jcm.65

    Article  MathSciNet  Google Scholar 

  8. Brezis H (1968) Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann l’Institut Four 18:115–175. https://doi.org/10.5802/aif.280

    Article  Google Scholar 

  9. Burman E, Hansbo P (2017) Deriving robust unfitted finite element methods from augmented lagrangian formulations. In Geometrically unfitted finite element methods and applications: proceedings of the UCL workshop 2016, Springer, pp 1–24. https://doi.org/10.1007/978-3-319-71431-8_1

  10. Burman E, Hansbo P, Larson MG (2019) Augmented Lagrangian finite element methods for contact problems. ESAIM: Math Model Numer Anal 53(1):173–195. https://doi.org/10.1051/m2an/2018047

    Article  MathSciNet  Google Scholar 

  11. Burman E, Hansbo P, Larson MG (2023) The augmented Lagrangian method as a framework for stabilised methods in computational mechanics. Arch Comput Meth Eng. https://doi.org/10.1007/s11831-022-09878-6

    Article  MathSciNet  Google Scholar 

  12. Cantin P, Hild P (2021) Error analysis of the compliance model for the Signorini problem. Calcolo 58(3):32. https://doi.org/10.1007/s10092-021-00425-6

    Article  MathSciNet  Google Scholar 

  13. Chouly F (2014) An adaptation of Nitsche’s method to the Tresca friction problem. J Math Anal Appl 411(1):329–339. https://doi.org/10.1016/j.jmaa.2013.09.019

    Article  MathSciNet  Google Scholar 

  14. Chouly F, Ern A, Pignet N (2020) A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. SIAM J Sci Comput 42(4):A2300–A2324. https://doi.org/10.1137/19M1286499

    Article  MathSciNet  Google Scholar 

  15. Chouly F, Fabre M, Hild P, Mlika R, Pousin J, Renard Y (2017) An overview of recent results on Nitsche’s method for contact problems. In: Geometrically unfitted finite element methods and applications, pp 93–141. https://doi.org/10.1007/978-3-319-71431-8_4

  16. Chouly F, Fabre M, Hild P, Pousin J, Renard Y (2018) Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J Numer Anal 38(2):921–954. https://doi.org/10.1093/imanum/drx024

    Article  MathSciNet  Google Scholar 

  17. Chouly F, Hild P (2013) A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J Numer Anal 51(2):1295–1307. https://doi.org/10.1137/12088344X

    Article  MathSciNet  Google Scholar 

  18. Chouly F, Hild P (2013) On convergence of the penalty method for unilateral contact problems. Appl Numer Math 65:27–40. https://doi.org/10.1016/j.apnum.2012.10.003

    Article  MathSciNet  Google Scholar 

  19. Chouly F, Hild P, Lleras V, Renard Y (2019) Nitsche-based finite element method for contact with coulomb friction. In: Numerical mathematics and advanced applications ENUMATH 2017, Springer, pp 839–847. https://doi.org/10.1007/978-3-319-96415-7_79

  20. Chouly F, Hild P, Lleras V, Renard Y (2022) Nitsche method for contact with Coulomb friction: existence results for the static and dynamic finite element formulations. J Comput Appl Math 416:114557. https://doi.org/10.1016/j.cam.2022.114557

    Article  MathSciNet  Google Scholar 

  21. Chouly F, Hild P, Renard Y (2015) A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM: Math. Model. Numer. Anal. 49(2):481–502. https://doi.org/10.1051/m2an/2014041

    Article  MathSciNet  Google Scholar 

  22. Chouly F, Hild P, Renard Y (2015) A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM: Math Model Numer Anal 49(2):503–528. https://doi.org/10.1051/m2an/2014046

    Article  MathSciNet  Google Scholar 

  23. Chouly F, Hild P, Renard Y (2015) Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math Comput 84(293):1089–1112. https://doi.org/10.1090/S0025-5718-2014-02913-X

    Article  MathSciNet  Google Scholar 

  24. Chouly F, Hild P, Renard Y (2023) Finite element approximation of contact and friction in elasticity, volume 48 of Advances in mechanics and mathematics/advances in continuum mechanics. Birkhäuser, Springer. ISBN 978-3-031-31422-3, pp xxi+294. https://doi.org/10.1007/978-3-031-31423-0

  25. Chouly F, Mlika R, Renard Y (2018) An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numerische Mathematik 139(3):593–631. https://doi.org/10.1007/s00211-018-0950-x

    Article  MathSciNet  Google Scholar 

  26. Chouly F, Renard Y (2018) Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems. Adv Model Simul Eng Sci 5(1):1–38. https://doi.org/10.1186/s40323-018-0124-5

    Article  Google Scholar 

  27. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375. https://doi.org/10.1115/1.2900803

    Article  MathSciNet  Google Scholar 

  28. Dabaghi F, Petrov A, Pousin J, Renard Y (2016) A robust finite element redistribution approach for elastodynamic contact problems. Appl Numer Math 103:48–71. https://doi.org/10.1016/j.apnum.2015.12.004

    Article  MathSciNet  Google Scholar 

  29. Dirani N, Monasse L (2022) An explicit pseudo-energy conservative scheme for contact between deformable solids. working paper or preprint. https://hal.science/hal-03879345

  30. Doyen D, Ern A, Piperno S (2011) Time-integration schemes for the finite element dynamic Signorini problem. SIAM J Sci Comput 33(1):223–249. https://doi.org/10.1137/100791440

    Article  MathSciNet  Google Scholar 

  31. Duvaut G, Lions J-L, Inequalities in mechanics and physics. In: Grundlehren der Mathematischen Wissenschaften. Vol. 219. Springer-Verlag, Berlin-New York, (1976) Translated from the French by C. W John. https://doi.org/10.1007/978-3-642-66165-5

  32. Erlicher S, Bonaventura L, Bursi OS (2002) The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Comput Mech 28(2):83–104. https://doi.org/10.1007/s00466-001-0273-z

    Article  MathSciNet  Google Scholar 

  33. Ern A, Guermond J-L (2018) Abstract nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell’s equations. Comput Meth Appl Math 18(3):451–475. https://doi.org/10.1515/cmam-2017-0058

    Article  MathSciNet  Google Scholar 

  34. Fichera G (1963/1964) Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti della Accademia Nazionale dei Lincei. Memorie. Classe di Scienze Fisiche, Matematiche e Naturali. Sezione Ia. Matematica, Meccanica, Astronomia, Geodesia e, 7:91–140

  35. Fichera G (1964) Elastostatics problems with unilateral constraints: the Signorini problem with ambiguous boundary conditions. Aerospace Research Laboratories, Office of Aerospace Research, United States

  36. Fortin M, Glowinski R (2000) Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems. Elsevier. https://doi.org/10.1016/s0168-2024(08)x7003-1

    Book  Google Scholar 

  37. Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. In: SIAM studies in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Vol. 9, Philadelphia. https://doi.org/10.1137/1.9781611970838

  38. Gustafsson T, Stenberg R, Videman J (2020) On Nitsche’s method for elastic contact problems. SIAM J Sci Comput 42(2):B425–B446. https://doi.org/10.1137/19M1246869

    Article  MathSciNet  Google Scholar 

  39. Han W, Sofonea M (2002) Quasistatic contact problems in viscoelasticity and viscoplasticity. In: AMS/IP studies in advanced mathematics. American Mathematical Society, vol. 30, Providence. https://doi.org/10.1090/amsip/030

  40. Hansbo P, Rashid A, Salomonsson K (2016) Least-squares stabilized augmented lagrangian multiplier method for elastic contact. Fin Elem Anal Des 116:32–37. https://doi.org/10.1016/j.finel.2016.03.005

    Article  MathSciNet  Google Scholar 

  41. Haslinger J, Hlaváček I, Nečas J (1996) Numerical methods for unilateral problems in solid mechanics. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol IV. North-Holland Publishing Co., Amsterdam. https://doi.org/10.1016/S1570-8659(96)80005-6

    Chapter  Google Scholar 

  42. Haslinger J, Miettinen M, Panagiotopoulos PD (1999) Finite element method for hemivariational inequalities. In: Nonconvex optimization and its applications, Vol. 35. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-1-4757-5233-5

  43. Hauret P, Le Tallec P (2006) Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput Meth Appl Mech Eng 195(37–40):4890–4916. https://doi.org/10.1016/j.cma.2005.11.005

    Article  MathSciNet  Google Scholar 

  44. Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4(5):303–320. https://doi.org/10.1007/BF00927673

    Article  MathSciNet  Google Scholar 

  45. Hilber HM, Hughes TJ, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292. https://doi.org/10.1002/eqe.4290050306

    Article  Google Scholar 

  46. Hlavácek I, Haslinger J, Necas J, Lovisek J (1988) Solution of variational inequalities in mechanics. In: Applied mathematical sciences, Vol. 66. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-1048-1

  47. Hosea M, Shampine L (1996) Analysis and implementation of TR-BDF2. Appl Numer Math 20(1–2):21–37. https://doi.org/10.1016/0168-9274(95)00115-8

    Article  MathSciNet  Google Scholar 

  48. Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596. https://doi.org/10.1137/060671061

    Article  MathSciNet  Google Scholar 

  49. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Cour Corp. https://doi.org/10.1111/j.1467-8667.1989.tb00025.x

    Article  Google Scholar 

  50. Jalali Mashayekhi M, Kövecses J (2017) A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multibody Syst Dyn 40(4):327–345. https://doi.org/10.1007/s11044-016-9510-2

    Article  MathSciNet  Google Scholar 

  51. Kanto Y, Yagawa G (1990) A dynamic contact buckling analysis by the penalty finite element method. Int J Numer Meth Eng 29(4):755–774. https://doi.org/10.1002/nme.1620290406

    Article  Google Scholar 

  52. Khenous HB (2005) Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Étude mathématique et résolution numérique. PhD thesis, INSA de Toulouse. https://theses.hal.science/tel-00011873

  53. Khenous HB, Laborde P, Renard Y (2008) Mass redistribution method for finite element contact problems in elastodynamics. Eur J Mech-A/Solids 27(5):918–932. https://doi.org/10.1016/j.euromechsol.2008.01.001

    Article  MathSciNet  Google Scholar 

  54. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. In: SIAM studies in applied mathematics, Vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, https://doi.org/10.1137/1.9781611970845

  55. Klarbring A, Mikelić A, Shillor M (1988) Frictional contact problems with normal compliance. Int J Eng Sci 26(8):811–832. https://doi.org/10.1016/0020-7225(88)90032-8

    Article  MathSciNet  Google Scholar 

  56. Krause R, Walloth M (2012) Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl Numer Math 62(10):1393–1410. https://doi.org/10.1016/j.apnum.2012.06.014

    Article  MathSciNet  Google Scholar 

  57. Laursen T, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Meth Eng 40(5):863–886

    Article  MathSciNet  Google Scholar 

  58. Laursen TA (2002) Computational contact and impact mechanics. Springer-Verlag. https://doi.org/10.1007/978-3-662-04864-1

    Article  Google Scholar 

  59. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94. https://doi.org/10.1061/JMCEA3.0000098

    Article  Google Scholar 

  60. Nitsche J (1971) Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36. Springer, pp 9–15. https://doi.org/10.1007/BF02995904

  61. Noh G, Bathe K-J (2019) For direct time integrations: a comparison of the Newmark and \(\rho _\infty \)-Bathe schemes. Comput Struct 225:106079. https://doi.org/10.1016/j.compstruc.2019.05.015

    Article  Google Scholar 

  62. Oden J (1981) Exterior penalty methods for contact problems in elasticity. Nonlinear Fin Elem Anal Struct Mech. https://doi.org/10.1007/978-3-642-81589-8_33

    Article  Google Scholar 

  63. Oden J, Kikuchi N (1982) Finite element methods for constrained problems in elasticity. Int J Numer Meth Eng 18(5):701–725. https://doi.org/10.1002/nme.1620180507

    Article  MathSciNet  Google Scholar 

  64. Oden J, Martins J (1985) Models and computational methods for dynamic friction phenomena. Comput Meth Appl Mech Eng 52(1):527–634. https://doi.org/10.1016/0045-7825(85)90009-X

    Article  MathSciNet  Google Scholar 

  65. Paoli L, Schatzman M (2002) A numerical scheme for impact problems. I. The one-dimensional case. SIAM J Numer Anal 40(2):702–733. https://doi.org/10.1137/S0036142900378728

    Article  MathSciNet  Google Scholar 

  66. Paoli L, Schatzman M (2002) A numerical scheme for impact problems. II. The multidimensional case. SIAM J Numer Anal 40(2):734–768. https://doi.org/10.1137/S003614290037873X

    Article  MathSciNet  Google Scholar 

  67. Powell MJ (1969) A method for nonlinear constraints in minimization problems. Optimization, pp 283–298

  68. Powell MJ (2010) On nonlinear optimization since 1959. In: The birth of numerical analysis, World Scientific, pp 141–160. https://doi.org/10.1142/9789812836267_0009

  69. Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Meth Appl Mech Eng 256:38–55. https://doi.org/10.1016/j.cma.2012.12.008

  70. Renard Y, Poulios K (2020) GetFEM: automated FE modeling of multiphysics problems based on a generic weak form language. ACM Trans Math Softw (TOMS) 47(1):1–31. https://doi.org/10.1145/3412849

    Article  MathSciNet  Google Scholar 

  71. Richtmyer RD, Morton KW (1994) Difference methods for initial-value problems. Malabar. https://doi.org/10.1137/1010073

    Article  Google Scholar 

  72. Seitz A, Wall WA, Popp A (2019) Nitsche’s method for finite deformation thermomechanical contact problems. Comput Mech 63:1091–1110. https://doi.org/10.1007/s00466-018-1638-x

    Article  MathSciNet  Google Scholar 

  73. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148. https://doi.org/10.1016/0377-0427(95)00057-7

    Article  MathSciNet  Google Scholar 

  74. Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511801181

    Book  Google Scholar 

  75. Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica 20:569–734. https://doi.org/10.1017/S0962492911000079

    Article  MathSciNet  Google Scholar 

  76. Wriggers P, Laursen TA (2006) Computational contact mechanics, vol 2. Springer. https://doi.org/10.1007/978-3-540-32609-0

    Book  Google Scholar 

  77. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by nitsche. Comput Mech 41:407–420. https://doi.org/10.1007/s00466-007-0196-4

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their helpful comments that allowed us to improve the presentation of these results. F.C.’s work is partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful for the Center for Mathematical Modeling grant FB20005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

The first appendix details the local truncation error for the HHT-alpha scheme. The second appendix provides the complete amplification matrix for HHT-alpha. The third one provides an introduction to the Nitsche-Hybrid scheme.

1.1 A.1 Local truncation error for HHT-\(\alpha \) scheme

Applying the local truncation error (27) to the SDOF system (25), the following holds:

$$\begin{aligned}{} & {} \Delta tT_n \nonumber \\{} & {} \quad {=} \frac{{-} \tilde{\alpha }\omega ^2\Delta t^2 {+} \frac{1}{\tilde{\beta }}}{\omega ^2\Delta t^2 \left( 1 {-} \tilde{\alpha }\right) {+} \frac{1}{\tilde{\beta }}}u(t^n) {+} \frac{\frac{1}{\tilde{\beta }}}{\omega ^2\Delta t^2 \left( 1 {-} \tilde{\alpha }\right) {+} \frac{1}{\tilde{\beta }}}\Delta t{\dot{u}}(t^n) \nonumber \\{} & {} \quad \quad {+} \frac{1 {-} 2 \tilde{\beta }}{2 \tilde{\beta }\left( \omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) {+} \frac{1}{\tilde{\beta }}\right) }\Delta t^2\ddot{u}(t^n) {-} u(t^n) {-} \Delta t{\dot{u}}(t^n) \nonumber \\{} & {} \quad - \frac{1}{2} \Delta t^2\ddot{u}(t^n) + O(\Delta t^3) \nonumber \\{} & {} {=} \frac{{-}\omega ^2\Delta t^2}{\omega ^2\Delta t^2 \left( 1 {-} \tilde{\alpha }\right) {+} \frac{1}{\tilde{\beta }}}u(t^n) {+} \frac{\left( 1-\tilde{\alpha }\right) \omega ^2\Delta t^2}{\omega ^2\Delta t^2 \left( 1 {-} \tilde{\alpha }\right) {+} \frac{1}{\tilde{\beta }}}\Delta t{\dot{u}}(t^n) \nonumber \\{} & {} \quad + \frac{1}{2}\left( \frac{(1-2\tilde{\beta })\frac{1}{\tilde{\beta }}}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}} - 1\right) \Delta t^2\ddot{u}(t^n) + O(\Delta t^3), \nonumber \\{} & {} = \frac{1}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\left( -\omega ^2\Delta t^2 u(t^n)\right. \nonumber \\{} & {} \quad \left. -\left( 1+\frac{\omega ^2\Delta t^2\left( 1-\tilde{\alpha }\right) }{2}\right) \Delta t^2\ddot{u}(t^n)\right) \nonumber \\{} & {} \quad + \frac{\left( 1-\tilde{\alpha }\right) \omega ^2\Delta t^2}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\Delta t{\dot{u}}(t^n) + O(\Delta t^3) \nonumber \\{} & {} = \frac{1}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\left( -\left( \omega ^2 u(t^n) + \ddot{u}(t^n)\right) \Delta t^2 \right. \nonumber \\{} & {} \left. \quad - \frac{\omega ^2\Delta t^2\left( 1-\tilde{\alpha }\right) }{2}\Delta t^4\ddot{u}(t^n)\right) \nonumber \\{} & {} \quad + \frac{\left( 1-\tilde{\alpha }\right) \omega ^2}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\Delta t^3{\dot{u}}(t^n) + O(\Delta t^3) \nonumber \\{} & {} \le \frac{1}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\left| \omega ^2 u(t^n) + \ddot{u}(t^n)\right| \Delta t^2 \nonumber \\{} & {} \quad + \frac{\left( 1-\tilde{\alpha }\right) \omega ^2}{\omega ^2\Delta t^2 \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}}\left| {\dot{u}}(t^n)\right| \Delta t^3 + O(\Delta t^3), \nonumber \\ \end{aligned}$$
(36)

which implies the boundness of the local truncation error.

1.2 A.2 Amplification matrix for HHT-\(\alpha \) scheme

Applying the HHT-\(\alpha \) scheme (24) to the SDOF system (25), by replacing the operators \(\textbf{M}\) and \(\textbf{B}\) by m and k respectively, the amplification matrix for the HHT-\(\alpha \) scheme reads below:

$$\begin{aligned} \left[ \begin{array}{lll} \frac{- \tilde{\alpha }\tilde{\omega }^{2} + \frac{1}{\tilde{\beta }}}{\tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}} &{} \frac{1}{\tilde{\beta }\left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) } &{} \frac{1 - 2 \tilde{\beta }}{2 \tilde{\beta }\left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) }\\ \tilde{\gamma }\left( \frac{- \tilde{\alpha }\tilde{\omega }^{2} + \frac{1}{\tilde{\beta }}}{\tilde{\beta }\left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) } - \frac{1}{\tilde{\beta }}\right) &{} \tilde{\gamma }\left( - \frac{1}{\tilde{\beta }} + \frac{1}{\tilde{\beta }^{2} \left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) }\right) + 1 &{} \tilde{\gamma }\left( \frac{2 \tilde{\beta }- 1}{2 \tilde{\beta }} + \frac{1 - 2 \tilde{\beta }}{2 \tilde{\beta }^{2} \left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) }\right) - \tilde{\gamma }+ 1\\ \frac{- \tilde{\alpha }\tilde{\omega }^{2} + \frac{1}{\tilde{\beta }}}{\tilde{\beta }\left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) } - \frac{1}{\tilde{\beta }} &{} - \frac{1}{\tilde{\beta }} + \frac{1}{\tilde{\beta }^{2} \left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) } &{} \frac{2 \tilde{\beta }- 1}{2 \tilde{\beta }} + \frac{1 - 2 \tilde{\beta }}{2 \tilde{\beta }^{2} \left( \tilde{\omega }^{2} \left( 1 - \tilde{\alpha }\right) + \frac{1}{\tilde{\beta }}\right) }\end{array}\right] . \end{aligned}$$
(37)

We recall that \(\textbf{Y}^{n+1} = \textbf{A}\textbf{Y}^n\) with \(\textbf{Y}^n = [u^n, \Delta t{\dot{u}}^n, \Delta t^2\ddot{u}^n]^T\) and \(\tilde{\omega }:= \omega ^2\Delta t^2\).

1.3 A.3 Nitsche-Hybrid time scheme

The Nitsche-Hybrid scheme has been introduced in [22] and solved the following system at each time step:

$$\begin{aligned} \left\{ \begin{aligned}&\text {Seek }\textbf{u}^{h, n+1}, {\dot{\textbf{u}}}^{h, n+1}, \ddot{\textbf{u}}^{h, n+1} \in \textbf{V}^h \text { s.t. }\\&\textbf{u}^{h, n+1} = \textbf{u}^{h, n} + \frac{\Delta t}{2}({\dot{\textbf{u}}}^{h, n} + {\dot{\textbf{u}}}^{h, n+1}), \\&{\dot{\textbf{u}}}^{h, n+1} = {\dot{\textbf{u}}}^{h, n} + \frac{\Delta t}{2}(\ddot{\textbf{u}}^{h, n} + \ddot{\textbf{u}}^{h, n+1}), \\&\frac{\textbf{M}}{2}(\ddot{\textbf{u}}^{h, n} {+} \ddot{\textbf{u}}^{h, n{+}1}) {+} \textbf{B}_{Nh}(\textbf{u}^{h, n}, \textbf{u}^{h, n{+}1}) {=} \frac{1}{2}(\textbf{L}^{n} {+} \textbf{L}^{n{+}1}). \end{aligned} \right. \end{aligned}$$
(38)

where non-linear operator \(\textbf{B}_{Nh}\) is defined by integration:

$$\begin{aligned} \begin{aligned}&\left( \textbf{B}_{Nh}(\textbf{u}^{h, n}, \textbf{u}^{h, n+1}), \textbf{w}^h\right) _{\Omega } \\&= \frac{1}{2}\left( a_{\gamma _N}(\textbf{u}^{h, n}, \textbf{w}^h) + a_{\gamma _N}(\textbf{u}^{h, n+1}, \textbf{w}^h)\right) \\&\quad {+} \left( \frac{1}{\gamma _N}H(P_N(\textbf{u}^{h, n}))\left[ \frac{1}{2}(P_N(\textbf{u}^{h, n}{+}\textbf{u}^{h, n{+}1}))\right] _{{\mathbb {R}}^{-}}, \textbf{w}^h\right) _{\Gamma _C} \\&\quad + \left( \frac{1}{\gamma _N}H(-P_N(\textbf{u}^{h, n}))\frac{1}{2}\left( \left[ P_N(\textbf{u}^{h, n})\right] _{{\mathbb {R}}^-} \right. \right. \\&\quad \left. \left. + \left[ P_N(\textbf{u}^{h, n+1})\right] _{{\mathbb {R}}^-}\right) , \textbf{w}^h\right) _{\Gamma _C}, \end{aligned}\nonumber \\ \end{aligned}$$
(39)

where \(H(\cdot )\) is the Heaviside function. This scheme is unconditionally stable for the symmetric version of Nitsche’s method. The main idea is to combine two different schemes with one during contact phases and one during non-contact phases. Hence, this scheme conserves the mechanical energy on the linear regime (when the contact is not active) as its equivalence with the mid-point scheme but it dissipates during contact phases. Moreover, this scheme is more nonlinear than the others and a bit more difficult to implement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Pignet, N., Drouet, G. et al. HHT-\(\alpha \) and TR-BDF2 schemes for dynamic contact problems. Comput Mech 73, 1165–1186 (2024). https://doi.org/10.1007/s00466-023-02405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02405-9

Keywords

Mathematics Subject Classification

Navigation