Skip to main content
Log in

Virtual element method with adaptive refinement for problems of two-dimensional complex topology models from an engineering perspective

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Virtual element methods (VEM) provide great flexibility in solving numerical problems defined on arbitrarily shaped polygonal or polyhedral discretizations. In this paper, we develop a framework for two dimensional elastic problems defined on complex topology models using high-order virtual element methods from an engineering perspective. The VEM discrete formulations are detailedly derived following the rule used in standard FEM. An arbitrarily complex model is first embedded into a rectangular domain which is then discretized into a structured grid. The elements intersecting with the boundaries are further adaptively refined through a quad-tree refinement strategy controlled by a subdivision level or an approximation error. An optimization method is proposed to avoid the generation of tiny elements and two averaged schemes for stress recovery in post-processing are discussed. The behavior of the proposed VEM is thoroughly studied and the results are compared with analytical solutions and that obtained from FEM. The heavy burden placed on meshing complex CAD geometries is greatly alleviated and the convergence studies confirm the accuracy and convergence of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Ahmad B, Alsaedi A, Brezzi F, Marini LD, Russo A (2013) Equivalent projectors for virtual element methods. Comput Math Appl 66(3):376–391

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldakheel F, Hudobivnik B, Artioli E, da Veiga LB, Wriggers P (2020) Curvilinear virtual elements for contact mechanics. Comput Methods Appl Mech Eng 372:113394

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput Methods Appl Mech Eng 341:443–466

    Article  MathSciNet  MATH  Google Scholar 

  4. Aldakheel F, Hudobivnik B, Wriggers P (2019) Virtual element formulation for phase-field modeling of ductile fracture. Int J Multiscale Comput Eng 17(2):181

    Article  MATH  Google Scholar 

  5. Aldakheel F, Hudobivnik B, Wriggers P (2019) Virtual elements for finite thermo-plasticity problems. Comput Mech 64(5):1347–1360

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti PF, Bruggi M, Scacchi S, Verani M (2017) On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput Math Appl 74(5):1091–1109

    Article  MathSciNet  MATH  Google Scholar 

  7. Aragón AM, Liang B, Ahmadian H, Soghrati S (2020) On the stability and interpolating properties of the hierarchical interface-enriched finite element method. Comput Methods Appl Mech Eng 362:112671

    Article  MathSciNet  MATH  Google Scholar 

  8. Artioli E, Da Veiga LB, Dassi F (2020) Curvilinear virtual elements for 2D solid mechanics applications. Comput Methods Appl Mech Eng 359:112667

    Article  MathSciNet  MATH  Google Scholar 

  9. Artioli E, Da Veiga LB, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60(3):355–377

    Article  MathSciNet  MATH  Google Scholar 

  10. Artioli E, De Miranda S, Lovadina C, Patruno L (2017) A stress/displacement virtual element method for plane elasticity problems. Comput Methods Appl Mech Eng 325:155–174

    Article  MathSciNet  MATH  Google Scholar 

  11. Artioli E, de Miranda S, Lovadina C, Patruno L (2019) An equilibrium-based stress recovery procedure for the VEM. Int J Numer Methods Eng 117(8):885–900

    Article  MathSciNet  Google Scholar 

  12. Artioli E, da Veiga LB, Verani M (2020) An adaptive curved virtual element method for the statistical homogenization of random fibre-reinforced composites. Finite Elem Anal Des 177:103418

    Article  MathSciNet  Google Scholar 

  13. Benedetto MF, Caggiano A, Etse G (2018) Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials. Comput Methods Appl Mech Eng 338:41–67

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi F, Lipnikov K, Simoncini V (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math Models Methods Appl Sci 15(10):1533–1551

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462

    Article  MathSciNet  MATH  Google Scholar 

  16. Chi H, Da Veiga LB, Paulino G (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192

    Article  MathSciNet  MATH  Google Scholar 

  17. Chi H, Pereira A, Menezes IF, Paulino GH (2020) Virtual element method (VEM)-based topology optimization: an integrated framework. Struct Multidiscip Optim 62(3):1089–1114

    Article  MathSciNet  Google Scholar 

  18. Chinosi C (2018) Virtual elements for the Reissner–Mindlin plate problem. Numer Methods Partial Differ Equ 34(4):1117–1144

    Article  MathSciNet  MATH  Google Scholar 

  19. Cihan M, Hudobivnik B, Aldakheel F, Wriggers P (2021) 3d mixed virtual element formulation for dynamic elasto-plastic analysis. Comput Mech 68:1

    Article  MathSciNet  MATH  Google Scholar 

  20. Da Veiga L, Beirao L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    Article  MathSciNet  MATH  Google Scholar 

  21. Da Veiga L, Beirao L, Brezzi F, Marini LD, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(08):1541–1573

    Article  MathSciNet  MATH  Google Scholar 

  22. Da Veiga LB, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    Article  MathSciNet  MATH  Google Scholar 

  23. Da Veiga LB, Lipnikov K, Manzini G (2011) Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J Numer Anal 49(5):1737–1760

    Article  MathSciNet  MATH  Google Scholar 

  24. Da Veiga LB, Mora D, Rivera G (2019) Virtual elements for a shear-deflection formulation of Reissner–Mindlin plates. Math Comput 88(315):149–178

    Article  MathSciNet  MATH  Google Scholar 

  25. Da Veiga LB, Russo A, Vacca G (2019) The virtual element method with curved edges. ESAIM Math Model Numer Anal 53(2):375–404

    Article  MathSciNet  MATH  Google Scholar 

  26. Dassault Systèmes: CATIA. https://www.3ds.com/products-services/catia/

  27. Du X, Zhao G, Wang W (2015) Nitsche method for isogeometric analysis of Reissner–Mindlin plate with non-conforming multi-patches. Comput Aided Geometric Des 35:121–136

    Article  MathSciNet  MATH  Google Scholar 

  28. Du X, Zhao G, Wang W, Fang H (2020) Nitsche’s method for non-conforming multipatch coupling in hyperelastic isogeometric analysis. Comput Mech 65(3):687–710

    Article  MathSciNet  MATH  Google Scholar 

  29. Engwirda D (2014) Locally optimal Delaunay-refinement and optimisation-based mesh generation. Ph.D. Thesis, School of Mathematics and Statistics, The University of Sydney

  30. Funken SA, Schmidt A (2020) Adaptive mesh refinement in 2D—an efficient implementation in matlab. Comput Methods Appl Math 20(3):459–479

    Article  MathSciNet  MATH  Google Scholar 

  31. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160

    Article  MathSciNet  MATH  Google Scholar 

  32. Hudobivnik B, Aldakheel F, Wriggers P (2019) A low order 3D virtual element formulation for finite elasto-plastic deformations. Comput Mech 63(2):253–269

    Article  MathSciNet  MATH  Google Scholar 

  33. Hughes TJ (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Inc

  34. Hussein A, Aldakheel F, Hudobivnik B, Wriggers P, Guidault PA, Allix O (2019) A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elem Anal Des 159:15–32

    Article  MathSciNet  Google Scholar 

  35. Kamel KEM, Sonon B, Massart TJ (2019) An integrated approach for the conformal discretization of complex inclusion-based microstructures. Comput Mech 64(4):1049–1071

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim HJ, Seo YD, Youn SK (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199(45–48):2796–2812

    Article  MathSciNet  MATH  Google Scholar 

  37. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218

    Article  MathSciNet  MATH  Google Scholar 

  38. Liang B, Nagarajan A, Soghrati S (2019) Scalable parallel implementation of CISAMR: a non-iterative mesh generation algorithm. Comput Mech 64(1):173–195

    Article  MathSciNet  MATH  Google Scholar 

  39. Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197(25–28):2173–2197

    Article  MathSciNet  MATH  Google Scholar 

  40. Meng J, Mei L (2020) A linear virtual element method for the Kirchhoff plate buckling problem. Appl Math Lett 103:106188

    Article  MathSciNet  MATH  Google Scholar 

  41. Meng J, Mei L (2020) A mixed virtual element method for the vibration problem of clamped kirchhoff plate. Adv Comput Math 46(5):1–18

    Article  MathSciNet  MATH  Google Scholar 

  42. Mengolini M, Benedetto MF, Aragón AM (2019) An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput Methods Appl Mech Eng 350:995–1023

    Article  MathSciNet  MATH  Google Scholar 

  43. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  MATH  Google Scholar 

  44. Mora D, Velásquez I (2020) Virtual element for the buckling problem of Kirchhoff-Love plates. Comput Methods Appl Mech Eng 360:112687

    Article  MathSciNet  MATH  Google Scholar 

  45. Nagarajan A, Soghrati S (2018) Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation. Comput Mech 62(5):1213–1238

    Article  MathSciNet  MATH  Google Scholar 

  46. Nguyen-Thanh VM, Zhuang X, Nguyen-Xuan H, Rabczuk T, Wriggers P (2018) A virtual element method for 2D linear elastic fracture analysis. Comput Methods Appl Mech Eng 340:366–395

    Article  MathSciNet  MATH  Google Scholar 

  47. Ortiz-Bernardin A, Alvarez C, Hitschfeld-Kahler N, Russo A, Silva-Valenzuela R, Olate-Sanzana E (2019) Veamy: an extensible object-oriented C++ library for the virtual element method. Numer Algorithms 82(4):1189–1220

    Article  MathSciNet  MATH  Google Scholar 

  48. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133

    Article  MathSciNet  MATH  Google Scholar 

  49. Piegl L, Tiller W (1996) The NURBS book, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  50. Rangarajan R, Lew AJ (2014) Universal meshes: a method for triangulating planar curved domains immersed in nonconforming meshes. Int J Numer Methods Eng 98(4):236–264

    Article  MathSciNet  MATH  Google Scholar 

  51. Roberts SA, Mendoza H, Brunini VE, Noble DR (2018) A verified conformal decomposition finite element method for implicit, many-material geometries. J Comput Phys 375:352–367

    Article  MathSciNet  Google Scholar 

  52. Rogers DF (2001) An introduction to NURBS: with historical perspective. Morgan Kaufmann

  53. Ruess M, Schillinger D, Oezcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71

    Article  MathSciNet  MATH  Google Scholar 

  54. Schillinger Dominik, Ruess Martin (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22(3):391–455. https://doi.org/10.1007/s11831-014-9115-y

    Article  MathSciNet  MATH  Google Scholar 

  55. Schneiders R (1996) A grid-based algorithm for the generation of hexahedral element meshes. Eng Comput 12(3–4):168–177

    Article  Google Scholar 

  56. Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive mesh refinement: new technique for the automated modeling of materials with complex microstructures. Finite Elem Anal Des 125:24–40

    Article  Google Scholar 

  57. Soghrati S, Xiao F, Nagarajan A (2017) A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems. Comput Mech 59(4):667–684

    Article  MathSciNet  Google Scholar 

  58. Sutton OJ (2017) The virtual element method in 50 lines of MATLAB. Numer Algorithms 75(4):1141–1159

    Article  MathSciNet  MATH  Google Scholar 

  59. Talischi C, Paulino GH, Pereira A, Menezes IF (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328

    Article  MathSciNet  MATH  Google Scholar 

  60. Van Huyssteen D, Reddy BD (2020) A virtual element method for isotropic hyperelasticity. Comput Methods Appl Mech Eng 367:113134

    Article  MathSciNet  MATH  Google Scholar 

  61. Wintiba B, Vasiukov D, Panier S, Lomov SV, Kamel KEM, Massart TJ (2020) Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control. Compos Struct 248:112438

    Article  Google Scholar 

  62. Wriggers P, Hudobivnik B (2017) A low order virtual element formulation for finite elasto-plastic deformations. Comput Methods Appl Mech Eng 327:459–477

    Article  MathSciNet  MATH  Google Scholar 

  63. Wriggers P, Hudobivnik B, Aldakheel F (2021) NURBS-based geometries: a mapping approach for virtual serendipity elements. Comput Methods Appl Mech Eng 378:113732

    Article  MathSciNet  MATH  Google Scholar 

  64. Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253-268

    Article  MathSciNet  MATH  Google Scholar 

  65. Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58(6):1039–1050

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang J, Aragón AM (2022) An improved stress recovery technique for the unfitted finite element analysis of discontinuous gradient fields. Int J Numer Methods Eng 123(3):639–663

    Article  MathSciNet  Google Scholar 

  67. Zhang XS, Chi H, Paulino GH (2020) Adaptive multi-material topology optimization with hyperelastic materials under large deformations: a virtual element approach. Comput Methods Appl Mech Eng 370:112976

    Article  MathSciNet  MATH  Google Scholar 

  68. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the Project funded by China Postdoctoral Science Foundation (Project No. 2021M690294) and National Natural Science Foundation of China (Project Nos. 62102012, 52175213 and 61972011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, W., Zhao, G. et al. Virtual element method with adaptive refinement for problems of two-dimensional complex topology models from an engineering perspective. Comput Mech 70, 581–606 (2022). https://doi.org/10.1007/s00466-022-02179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02179-6

Keywords

Navigation