Skip to main content
Log in

A fractional-order dependent collocation method with graded mesh for impulsive fractional-order system

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The impulsive differential equations are regarded as an optimal method to describe solute concentration fluctuation transport in unsteady flow field which are influenced by natural factors or human activities. The key difficulty of impulsive fractional-order system (IFS) in numerical discretization is that fractional-orders are different in different impulsive period. This paper proposes a double-scale-dependent mesh method considering the period memory, and makes a comparison with four collocation modes for the implict difference method. Furthermore, the stability and truncation error for graded meshes are estimated and analyzed. The analysis result reveals that the convergence rate mainly depends on the largest fractional order on the IFS. Numerical results show all graded meshes (producing the dense mesh at the early stage) provide better performance than uniform mesh. Meanwhile, the PDE cases show double-scale-dependent mesh is the most efficient numerical approximation method for the pulsation diffusion of contaminant in porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Z, Mark B (1998) Characterizing three-dimensional hydraulic conductivity distributions using qualitative and quantitative geologic borehole data: application to a field site. Groundwater 36(4):671–678

    Article  Google Scholar 

  2. Boisson A, Guihéneuf N, Perrin J, Bour O, Dewandel B, Dausse A, Viossanges M, Ahmed S, Maréchal J (2015) Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site. Hydrogeol J 23(4):757–773

    Article  Google Scholar 

  3. Guo Z, Henri C, Fogg G, Zhang Y, Zheng C (2020) adaptive multirate mass transfer (aMMT) model: a new approach to upscale regional-scale transport under transient flow conditions. Water Resour Res. https://doi.org/10.1029/2019WR026000

    Article  Google Scholar 

  4. Guo Z, Fogg G, Brusseau M, Jose L, LaBolle E (2019) Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and Rwhet. Hydrogeol J 27(4):1363–1371

    Article  Google Scholar 

  5. Chen K, Zhan H, Yang Q (2017) Fractional models simulating non-fickian behavior in four-stage single-well push-pull tests. Water Resour Res 53(11):9528–9545

    Article  Google Scholar 

  6. Milman V, Myshkis A (1960) On the stability of motion in the presence of impulses. Sibirskii Matematicheskii Zhurnal 1(2):233–237

    MathSciNet  Google Scholar 

  7. Lakshmikantham V, Bainov D, Simeonov P (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Book  Google Scholar 

  8. Baino D, Covachev V (1994) Differential equationswith a small perturbations. World Scientific, New Jersey, NJ, USA

    Google Scholar 

  9. Benchohra M, Henderson J, Ntonyas S (2006) Impulsive differential equations and inclusions. Hindawi Publishing Corporation, New York, NY, USA

    Book  Google Scholar 

  10. Samoilenko M, Perestyuk A (1995) Impulsive differential equations. World Scientific, Singapore

    Book  Google Scholar 

  11. Benchohra M, Berhoun F (2010) Impulsive fractional differential equations with variable times. Comput Math Appl 59(3):1245–1252

    Article  MathSciNet  Google Scholar 

  12. Wang J, Feckan M, Zhou Y (2016) A survey on impulsive fractional differential equations. Fract Calc Appl Anal 19:806–831

    Article  MathSciNet  Google Scholar 

  13. Feckan M, Zhou Y, Wang J (2012) On the concept and existence of solution for impulsive fractional differential equations. Commun Nonlinear Sci Numer Simul 17:3050–3060

    Article  MathSciNet  Google Scholar 

  14. Agarwal R, Hristova S, O’Regan D (2017) Non–instantaneous impulses in Caputo fractional differential equations. Fract Calc Appl Anal 20:595–622

    Article  MathSciNet  Google Scholar 

  15. Li H, Jiang Y, Wang Z, Hu C (2015) Global stability problem for feedback control systems of impulsive fractional differential equations on networks. Neurocomput 161:155–161

    Article  Google Scholar 

  16. Wu G, Zeng D, Baleanu D (2019) Fractional impulsive differential equations: Exact solutions, integral equations and short memory case. Fract Calc Appl Anal 22(1):180–192

    Article  MathSciNet  Google Scholar 

  17. Zhang Y, Sun H, Stowell H, Zayernouri M, Hansen S (2017) A review of applications of fractional calculus in Earth system dynamics. Chaos Soliton Fract 102:29–46

    Article  MathSciNet  Google Scholar 

  18. Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719

    Article  MathSciNet  Google Scholar 

  19. Lubich C (1988) Convolution quadrature and discretized operational calculus. II Numer Math 52(4):413–425

    Article  MathSciNet  Google Scholar 

  20. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  21. Podlubny I (2000) Matrix approach to discrete fractional calculus. Fract Calc Appl Anal 3(4):359–386

    MathSciNet  MATH  Google Scholar 

  22. Diethelm K, Ford N (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    Article  MathSciNet  Google Scholar 

  23. Diethelm K, Ford N, Freed A (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29:3–22

    Article  MathSciNet  Google Scholar 

  24. Tadjeran C, Meerschaert M, Scheffler H (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213(1):205–213

    Article  MathSciNet  Google Scholar 

  25. Tang S, Ying Y, Lian Y, Lin S, Yang Y, Wagner G, Liu W (2016) Differential operator multiplication method for fractional differential equations. Comput Mech 58:879–888

    Article  MathSciNet  Google Scholar 

  26. Ying Y, Lian Y, Tang S, Liu W (2017) High-order central difference scheme for Caputo fractional derivative. Comput Method Appl M 317:42–54

    Article  MathSciNet  Google Scholar 

  27. Chen M, Luan S, Lian Y (2021) Fractional SUPG finite element formulation for multi-dimensional fractional advection diffusion equations. Comput Mech 67:601–617

    Article  MathSciNet  Google Scholar 

  28. Lian Y, Ying Y, Tang S, Lin S, Wagner G, Liu W (2016) A Petrov-Galerkin finite element method for the fractional advection-diffusion equation. Comput Method Appl M 309:388–410

    Article  MathSciNet  Google Scholar 

  29. Luan S, Lian Y, Ying Y, Tang S, Wagner G, Liu W (2017) An enriched finite element method to fractional advection-diffusion equation. Comput Mech 60:181–201

    Article  MathSciNet  Google Scholar 

  30. Ying Y, Lian Y, Tang S, Liu W (2018) Enriched reproducing kernel particle method for fractional advection-diffusion equation. Acta Mech Sinica-Prc 34:515–527

    Article  MathSciNet  Google Scholar 

  31. Wang H, Zhang X (2015) A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J Comput Phys 281:67–81

    Article  MathSciNet  Google Scholar 

  32. Wang H, Yang D, Zhu S (2017) Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J Sci Comput 70:429–449

    Article  MathSciNet  Google Scholar 

  33. Zhang Y, Sun Z, Liao H (2014) Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys 265:195–210

    Article  MathSciNet  Google Scholar 

  34. Li C, Yi Q, Chen A (2016) Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J Comput Phys 316:614–631

    Article  MathSciNet  Google Scholar 

  35. Stynes M, O’Riordan E, Gracia J (2017) Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal 55(2):1057–1079

    Article  MathSciNet  Google Scholar 

  36. Jia J, Wang H (2019) A fast finite volume method for conservative space–time fractional diffusion equations discretized on space–time locally refined meshes. Comput Math Appl 78(5):1345–1356

    Article  MathSciNet  Google Scholar 

  37. Liu X, Sun HG, Zhang Y, Fu Z (2019) A scale-dependent finite difference approximation for time fractional differential equation. Comput Mech 63(3):429–442

    Article  MathSciNet  Google Scholar 

  38. Wu G, Deng Z, Baleanu D, Zeng D (2019) New variable-order fractional chaotic systems for fast image encryption. Chaos 29(8):083103

    Article  MathSciNet  Google Scholar 

  39. Nissan A, Dror I, Berkowitz B (2017) Time-dependent velocity-field controls on anomalous chemical transport in porous media. Water Resour Res 53:3760–3769

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dumitru Baleanu for valuable discussion. This work (except that of Yong Zhang) is supported by the National Natural Science Foundation of China (Grant Nos. 11972148, 41831289 and 41931292), Natural Science Foundation of Jiangsu Province (Grant No. BK20190024). This paper does not necessarily reflect the view of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGuang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Lemma 2.1.

For 0 < \(\alpha \) k+1 < 1 and \(f_{k + 1} (s_{n} ) \in C^{2}\)\(s_{n} \in [t_{k} ,t_{k + 1} ]\backslash \left\{ {t_{{1}} , \ldots ,t_{m} } \right\}\), k = 0, 1, … m (when k = m and 0, \(t_{m + 1}^{ - } = t_{m + 1}^{ + }\) and \(t_{0}^{ - } = t_{0}^{ + }\). j is the j-th node of sn in [tk,tk+1]. when j = 0, sn = tk), it holds that

$$ \frac{{1}}{{\Gamma \left( {{1} - \alpha_{k + 1} } \right)}}\int\limits_{{t_{k} }}^{{s_{n} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } = \frac{{1}}{{\Gamma \left( {{1} - \alpha_{k + 1} } \right)}}\sum\limits_{p = 0}^{j - 1} {\frac{{u(s_{n - p} ) - u(s_{n - p - 1} )}}{{\tau_{n - p} }}} \int\limits_{{s_{n - p - 1} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } + R_{k + 1}^{n} $$
$$ \begin{aligned} \left| {R^{n} } \right| & \le \frac{{max\left( {\tau_{{^{n - p} }}^{2} } \right)}}{8}\mathop {max}\limits_{{t_{k} \le s_{n - p} \le s_{n - 1} }} \left| {u^{\prime\prime}(s_{n - p} )} \right|(\tau_{n}^{{ - \alpha_{k + 1} }} - \left( {s_{n} - t_{k} } \right)^{{ - \alpha_{k + 1} }} )\\& \quad + \frac{{\tau_{n}^{{2 - \alpha_{k + 1} }} }}{{2\left( {1 - \alpha_{k + 1} } \right)}}\mathop {max}\limits_{{s_{n - 1} \le s \le s_{n} }} \left| {u^{^{\prime\prime}} (s)} \right| \hfill \\ & \le \mathop {max}\limits_{{t_{k} \le s \le s_{n} }} \left| {u^{^{\prime\prime}} (s)} \right|\left( {\frac{{max\left( {\tau_{{^{n - p} }}^{2} } \right)\tau_{n}^{{ - \alpha_{k + 1} }} }}{8} + \frac{{\tau_{n}^{{2 - \alpha_{k + 1} }} }}{{2\left( {1 - \alpha_{k + 1} } \right)}}} \right) \hfill \\ \end{aligned} $$
(18)

Proof

The discretization scheme of the integral shown in Eq. (18) can also be written as:

$$ \int\limits_{{t_{k} }}^{{s_{n} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } = \int\limits_{{t_{k} }}^{{s_{n - 1} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } + \int\limits_{{s_{n - 1} }}^{{s_{n} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } $$
(19)

Then, we divide the scheme into two parts. First, utilizing integration by parts, it is easy to obtain:

$$ \begin{aligned}& \int\limits_{{t_{k} }}^{{s_{n - 1} }} {u^{\prime} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } \hfill \\ &= \left[ {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} u(\xi )} \right]_{{t_{k} }}^{{s_{n - 1} }} - \alpha_{k + 1} \int\limits_{{t_{k} }}^{{s_{n - 1} }} {u(\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} d\xi } \hfill \\ &= \left( \begin{aligned} & \tau_{n}^{{ - \alpha_{k + 1} }} u(s_{n - 1} ) - (s_{n} - t_{k} )^{{ - \alpha_{k + 1} }} u(t_{k} ) - \hfill \\ & \alpha_{k + 1} \sum\limits_{p = 1}^{j} {\int\limits_{{s_{n - 1 - p} }}^{{s_{n - p} }} {\frac{{\left( {s_{n - p} - \xi } \right)u(s_{n - 1 - p} ) + \left( {\xi - s_{n - 1 - p} } \right)u(s_{n - p} )}}{{\tau_{n - p} }}(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} } } d\xi - \left( {R_{1}^{k} } \right)^{n} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned} $$
(20)

Note that:

$$ \begin{gathered} \int\limits_{{s_{n - 1 - p} }}^{{s_{n - p} }} {\left( {s_{n - p} - \xi } \right)(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} } d\xi = - \frac{{\tau_{n - p} }}{{\alpha_{k + 1} }}\left( {s_{n} - s_{n - 1 - p} } \right)^{{ - \alpha_{k + 1} }} + \frac{1}{{\alpha_{k + 1} }}\int\limits_{{s_{n - 1 - p} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} } d\xi \hfill \\ \int\limits_{{s_{n - 1 - p} }}^{{s_{n - p} }} {\left( {\xi - s_{n - 1 - p} } \right)(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} } d\xi = \frac{{\tau_{n - p} }}{{\alpha_{k + 1} }}\left( {s_{n} - s_{n - p} } \right)^{{ - \alpha_{k + 1} }} - \frac{1}{{\alpha_{k + 1} }}\int\limits_{{s_{n - 1 - p} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} } d\xi \hfill \\ \end{gathered} $$
(21)

By combining Eqs. (20) and (21), we obtains:

$$ \begin{aligned} &\int\limits_{{t_{k} }}^{{s_{n - 1} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } \hfill \\ &= \left( \begin{aligned} & \tau_{n}^{{ - \alpha_{k + 1} }} u(s_{n - 1} ) - (s_{n} - t_{k} )^{{ - \alpha_{k + 1} }} u(t_{k} ) + \sum\limits_{p = 1}^{j} {u(s_{n - 1 - p} )\left( {s_{n} - s_{n - 1 - p} } \right)^{{ - \alpha_{k + 1} }} } \hfill \\ & - \sum\limits_{p = 1}^{j} {u(s_{n - p} )\left( {s_{n} - s_{n - p} } \right)^{{ - \alpha_{k + 1} }} } + \sum\limits_{p = 1}^{j} {\frac{{u(s_{n - p} ) - u(t_{n - p - 1} )}}{{\tau_{n - p} }}\int\limits_{{s_{n - p - 1} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} } } d\xi - \left( {R_{1}^{k} } \right)^{n} \hfill \\ \end{aligned} \right) \hfill \\ &= \sum\limits_{p = 1}^{j} {\frac{{u(s_{n - p} ) - u(s_{n - p - 1} )}}{{\tau_{n - p} }}\int\limits_{{s_{n - p - 1} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} }} } } d\xi - \left( {R_{1}^{k} } \right)^{n} \hfill \\ \end{aligned} $$
(22)

Considering the linear interpolation, we can get

$$ \left( {R_{1}^{k} } \right)^{n} = \alpha_{k + 1} \sum\limits_{p = 1}^{j} {\int\limits_{{s_{n - p - 1} }}^{{s_{n - p} }} {\frac{1}{2}f^{^{\prime\prime}} (\xi_{p} )(\xi - s_{n - p} )(\xi - s_{n - p - 1} )(s_{n} - \xi )^{ - \alpha - 1} d\xi } } , \, \xi_{p} \in \left( {s_{n - p - 1} ,s_{n - p} } \right) $$

Then, we have

$$ \begin{aligned} \left| {\left( {R_{1}^{k} } \right)^{n} } \right| & \le \frac{{\alpha_{k + 1} }}{8}\sum\limits_{p = 1}^{j} {\tau_{n - p}^{2} } \left| {u^{\prime\prime}(s_{n - p} )} \right|\int\limits_{{s_{n - p - 1} }}^{{s_{n - p} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} } d\xi \hfill \\ & \le \frac{{\alpha_{k + 1} \max \left( {\tau_{{^{n - p} }}^{2} } \right)}}{8}\mathop {\max }\limits_{{t_{k} \le s_{n - p} \le s_{n - 1} }} \left| {u^{\prime\prime}(s_{n - p} )} \right|\int\limits_{{t_{k} }}^{{s_{n - 1} }} {(s_{n} - \xi )^{{ - \alpha_{k + 1} - 1}} } d\xi \hfill \\ & = \frac{{\max \left( {\tau_{{^{n - p} }}^{2} } \right)}}{8}\mathop {\max }\limits_{{t_{k} \le s_{n - p} \le s_{n - 1} }} \left| {u^{\prime\prime}(s_{n - p} )} \right|(\tau_{n}^{{ - \alpha_{k + 1} }} - \left( {s_{n} - t_{k} } \right)^{{ - \alpha_{k + 1} }} ) \hfill \\ \end{aligned} $$
(23)

Using the Taylor series expansion, the error of the second term on the right-hand side of formula (19) is

$$ \begin{aligned} \left| {\left( {R_{2}^{k} } \right)^{n} } \right| &= \left| {\int\limits_{{s_{n - 1} }}^{{s_{n} }} {u^{^{\prime}} (\xi )(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } - \int\limits_{{s_{n - 1} }}^{{s_{n} }} {\frac{{f(s_{n} ) - f(s_{n - 1} )}}{{\tau_{n} }}(s_{n} - \xi )^{{ - \alpha_{k + 1} }} d\xi } } \right| \hfill \\ & \le \frac{{\tau_{n}^{2} }}{2}\mathop {max}\limits_{{s_{n - 1} \le s \le s_{n} }} \left| {u^{^{\prime\prime}} (s)} \right|\frac{{\tau_{n}^{{ - \alpha_{k + 1} }} }}{{1 - \alpha_{k + 1} }} \hfill \\ & \le \frac{{\tau_{n}^{{2 - \alpha_{k + 1} }} }}{{2\left( {1 - \alpha_{k + 1} } \right)}}\mathop {\max }\limits_{{s_{n - 1} \le s \le s_{n} }} \left| {u^{^{\prime\prime}} (s)} \right| \hfill \\ \end{aligned} $$
(24)

By summing formulas (23) and (24), we complete the proof.\(\square\)

Appendix B

The inner products, L2 norm, H1 seminorm and H1 norm, are introduced:

$$ \begin{gathered} \left\langle {m,n} \right\rangle = \int\limits_{\Omega } {mnd{\mathbf{x}}} \, \hfill \\ \left\| m \right\| = \sqrt {\left\langle {m,m} \right\rangle } \hfill \\ \left\| {\nabla m} \right\| = \sqrt {\left\langle {\nabla m,\nabla m} \right\rangle } \hfill \\ \left\| m \right\|_{1} = \sqrt {\left\| m \right\|^{2} { + }\left\| {\nabla m} \right\|^{2} } \hfill \\ \end{gathered} $$

Then the Green’s first formula can be written as:

$$ m,\Delta w + \nabla m,\nabla w = \mathop {\oint }\limits_{{\partial {\Omega }}}^{{}} m\left( {\nabla w \cdot \vec{n}} \right)dS $$

where \(\Delta\) and \(\nabla\) represent the Laplace and gradient operator, respectively; and \(\overrightarrow {n}\) is the outer normal vector of the limited surface dS.

Lemma 2.2.

The difference scheme for the five collocation meshes for Eq. (11) is unconditionally stable to the initial condition \(u_{{t_{k} }} + R_{ku}^{{t_{k} }}\) u0 and the source part f:

$$ \left\| {\nabla \left( {u_{n + 1} + R_{k}^{n + 1} } \right)} \right\|^{2} \le \left\| {\nabla \left( {u_{{t_{k} }} + R_{ku}^{{t_{k} }} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\mathop {\max }\limits_{1 \le h \le n + 1} \left\| {f_{h + 1}^{k + 1} } \right\|^{2} ,{ 0} \le t_{n} \le T $$

Proof.

Multiplying both sides of Eq. (11) by \(- 2\Delta \left( {u(s_{n + 1} ) + R_{k} (s_{n + 1} )} \right)\) and then applying Green’s first formula, we get:

$$ \begin{aligned} & 2\chi_{n + 1}^{n + 1} \left\| {\nabla \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{2} + 2\left\| {\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{{2}} \hfill \\ & = \left( \begin{aligned} & 2\sum\limits_{h = 0}^{j} {(\chi_{n + 1}^{h + 1} - \chi_{n + 1}^{h} )} \left\langle {\nabla (u^{h} + R_{k}^{h} ),\Delta (u_{n + 1} + R_{k}^{j + 1} )} \right\rangle \hfill \\ & + 2\chi_{n + 1}^{0} \left\langle {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right),\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\rangle - 2\left\langle {f_{{^{n + 1} }}^{k + 1} ,\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\rangle \hfill \\ \end{aligned} \right) \hfill \\ & \le \left( \begin{aligned} & \sum\limits_{h = 0}^{j} {(\chi_{n + 1}^{h + 1} - \chi_{n + 1}^{h} )} \left( {\left\| {\nabla (u^{h} + R_{k}^{h} )} \right\|^{2} + \left\| {\Delta (u_{n + 1} + R_{k}^{j + 1} )} \right\|^{2} } \right) \hfill \\ & + \chi_{n + 1}^{0} \left( {\left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \left\| {\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{2} } \right) + \frac{1}{2}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} + 2\left\| {\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{2} \hfill \\ \end{aligned} \right) \hfill \\ & = \left( \begin{aligned} & \sum\limits_{h = 0}^{j} {(\chi_{n + 1}^{h + 1} - \chi_{n + 1}^{h} )} \left\| {\nabla (u^{h} + R_{k}^{h} )} \right\|^{2} + \chi_{{n{ + 1}}}^{{n{ + 1}}} \left\| {\nabla (u_{n + 1} + R_{k}^{j + 1} )} \right\|^{2} \hfill \\ & + \chi_{n + 1}^{0} \left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{1}{2}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} + 2\left\| {\Delta \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{2} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned} $$

where j is the j-th node of sn within [tk, tk+1]. According to the monotonic increasing function \(\chi_{n + 1 - p}^{k} > 0\), we have

$$ \chi_{n - j}^{k} > \frac{{\left( {s_{n + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}{{\Gamma (1 - \alpha_{k + 1} )}} > \frac{{\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}{{\Gamma (1 - \alpha_{k + 1} )}} $$

And we have \( \left\| {\nabla (u^{h} + R_{k}^{h} )} \right\|^{2} \le \left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\mathop {\max }\limits_{1 \le h \le n + 1} \left\| {f_{h + 1}^{k + 1} } \right\|^{2} h = 0,1 \cdots j + 1\)

Then

$$ \begin{aligned} \chi_{n + 1}^{n + 1} \left\| {\nabla \left( {u_{n + 1} + R_{k}^{j + 1} } \right)} \right\|^{2}& \le \left( \begin{aligned} & \sum\limits_{h = 0}^{j} {(\chi_{n + 1}^{h + 1} - \chi_{n + 1}^{h} )} \left\| {\nabla (u^{h} + R_{k}^{h} )} \right\|^{2} \hfill \\ & + \chi_{n + 1}^{0} \left( {\left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} } \right) \hfill \\ \end{aligned} \right) \hfill \\ & \le \left( \begin{aligned} & \sum\limits_{h = 0}^{j} {(\chi_{n + 1}^{h + 1} - \chi_{n + 1}^{h} )} \left( {\left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} } \right) \hfill \\ & + \chi_{n + 1}^{0} \left( {\left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} } \right) \hfill \\ \end{aligned} \right) \hfill \\ & = \chi_{n + 1}^{n + 1} \left( {\left\| {\nabla \left( {u_{{t_{k} }} + R_{k}^{{}} } \right)} \right\|^{2} + \frac{{\Gamma (1 - \alpha_{k + 1} )}}{{2\left( {t_{k + 1} - t_{k} } \right)^{{ - \alpha_{k + 1} }} }}\left\| {f_{{^{n + 1} }}^{k + 1} } \right\|^{2} } \right) \hfill \\ \end{aligned} $$

According to Eq. (13) and \(R_{0}^{{t_{0} }} = 0\), the value of \(R_{k}^{n + 1}\) approaches zero with the increasing node number N by the recurrence relation.

The proof is completed.\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Sun, H. et al. A fractional-order dependent collocation method with graded mesh for impulsive fractional-order system. Comput Mech 69, 113–131 (2022). https://doi.org/10.1007/s00466-021-02085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02085-3

Keywords

Navigation