Skip to main content
Log in

Analytical expression of RKPM shape functions

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we derive an analytical expression for reproducing kernel particle method (RKPM) shape functions. Based on this, we propose a necessary and sufficient stability condition for general RKPM in arbitrary function space, and illustrate with degenerate cases. By selecting proper basis vectors and the support of the kernel functions, we demonstrate that the RKPM framework allows generating many kinds of shape functions, including the Lagrangian, B-spline and NURBS shape functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  2. Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  3. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  Google Scholar 

  4. Chen J-S, Pan C, Wu C-T (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19(3):211–227

    Article  MathSciNet  Google Scholar 

  5. Lian Y, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241:275–285

    Article  Google Scholar 

  6. Bessa M, Foster JT, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264

    Article  MathSciNet  Google Scholar 

  7. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MathSciNet  Google Scholar 

  8. Liu WK, Chen Y, Jun S, Chen J, Belytschko T, Pan C, Uras R, Chang C (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80

    Article  MathSciNet  Google Scholar 

  9. Ying Y, Lian Y, Tang S, Liu WK (2018) Enriched reproducing kernel particle method for fractional advection-diffusion equation. Acta Mech Sin 34(3):515–527

    Article  MathSciNet  Google Scholar 

  10. Zhou J, Wang X, Zhang Z, Zhang L (2004) On some enrichments of reproducing kernel particle method. Int J Comput Methods 1(03):519–533

    Article  Google Scholar 

  11. Zhou J, Wang X, Zhang Z, Zhang L (2005) Explicit 3-D RKPM shape functions in terms of kernel function moments for accelerated computation. Comput Methods Appl Mech Eng 194(9–11):1027–1035

    Article  Google Scholar 

  12. Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (i) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154

    Article  MathSciNet  Google Scholar 

  13. Li S, Qian D, Liu WK, Belytschko T (2001) A meshfree contact-detection algorithm. Comput Methods Appl Mech Eng 190(24–25):3271–3292

    Article  MathSciNet  Google Scholar 

  14. Han W, Meng X (2001) Error analysis of the reproducing kernel particle method. Comput Methods Appl Mech Eng 190(46–47):6157–6181

    Article  MathSciNet  Google Scholar 

  15. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  16. Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam

    Google Scholar 

  17. Wang D, Zhang H (2014) A consistently coupled isogeometric-meshfree method. Comput Methods Appl Mech Eng 268:843–870

    Article  MathSciNet  Google Scholar 

  18. Marsden MJ (1970) An identity for spline functions with applications to variation-diminishing spline approximation. J Approx Theory 3(1):7–49

    Article  MathSciNet  Google Scholar 

  19. Zhang H, Wang D (2017) Reproducing kernel formulation of B-spline and NURBS basis functions: a meshfree local refinement strategy for isogeometric analysis. Comput Methods Appl Mech Eng 320:474–508

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Lei Zhang and Shaoqiang Tang were supported partially by NSFC under Grant Numbers 11832001, 11890681, and 11988102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Illustration for Lemma 1 with \(q=2,n=3\)

When \(q=2, n=3\), we have

$$\begin{aligned}&\varvec{A}=P_1 Q^T_1+P_2 Q^T_2+P_3 Q^T_3, P_I=[P^1_I,P^2_I]^T,\nonumber \\&Q_I=[Q^1_I,Q^2_I]^T,I=1,2,3. \end{aligned}$$
(60)

The determinant is

$$\begin{aligned} \mathrm {det}(\varvec{A})=A_{1,1} A_{2,2} - A_{1,2} A_{2,1}, \end{aligned}$$
(61)

where

$$\begin{aligned} A_{i,j}=\sum _{I=1}^3 P^i_I Q^j_I. \end{aligned}$$
(62)

Expand (61) and assemble the terms according to the same order of components. For example, we take \(P^1_1 Q^j_1 (j=1,2)\) from \(A_{1,j}\) and take \(P^2_2 Q^j_2 (j=1,2)\) from \(A_{2,j}\). The summation is

$$\begin{aligned}&(P^1_1 Q^1_1)(P^2_2 Q^2_2)-(P^1_1 Q^2_1)(P^2_2 Q^1_2)=\left| \begin{array}{cc} P^1_1 Q^1_1 &{} P^1_1 Q^2_1 \\ P^2_2 Q^1_2 &{} P^2_2 Q^2_2 \end{array}\right| \nonumber \\&\quad =P^1_1 P^2_2\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_2 &{} Q^2_2 \end{array}\right| . \end{aligned}$$
(63)

Thus, (61) becomes

$$\begin{aligned} \mathrm {det}(\varvec{A})= & {} P^1_1 P^2_1\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_1 &{} Q^2_1 \end{array}\right| + P^1_1 P^2_2\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_2 &{} Q^2_2 \end{array}\right| \nonumber \\&+ P^1_1 P^2_3\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_3 &{} Q^2_3 \end{array}\right| \nonumber \\&+ P^1_2 P^2_1\left| \begin{array}{cc} Q^1_2 &{} Q^2_2 \\ Q^1_1 &{} Q^2_1 \end{array}\right| \nonumber \\&+ P^1_2 P^2_2\left| \begin{array}{cc} Q^1_2 &{} Q^2_2 \\ Q^1_2 &{} Q^2_2 \end{array}\right| + P^1_2 P^2_3\left| \begin{array}{cc} Q^1_2 &{} Q^2_2 \\ Q^1_3 &{} Q^2_3 \end{array}\right| \nonumber \\&+ P^1_3 P^2_1\left| \begin{array}{cc} Q^1_3 &{} Q^2_3 \\ Q^1_1 &{} Q^2_1 \end{array}\right| + P^1_3 P^2_2\left| \begin{array}{cc} Q^1_3 &{} Q^2_3 \\ Q^1_2 &{} Q^2_2 \end{array}\right| \nonumber \\&+ P^1_3 P^2_3\left| \begin{array}{cc} Q^1_3 &{} Q^2_3 \\ Q^1_3 &{} Q^2_3 \end{array}\right| . \end{aligned}$$
(64)

Obviously, we have

$$\begin{aligned} \left| \begin{array}{cc} Q^1_I &{} Q^2_I \\ Q^1_I &{} Q^2_I \end{array}\right| =0, I=1,2,3. \end{aligned}$$
(65)

Then, we combine the terms corresponding to the same index pair \(\mathrm {det}([(\varvec{Q}_I)^T; (\varvec{Q}_J)^T])\),

$$\begin{aligned} \mathrm {det}(\varvec{A})= & {} (P^1_1 P^2_2-P^1_2 P^2_1)\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_2 &{} Q^2_2 \end{array}\right| \nonumber \\&+ (P^1_2 P^2_3-P^1_3 P^2_2)\left| \begin{array}{cc} Q^1_2 &{} Q^2_2 \\ Q^1_3 &{} Q^2_3 \end{array}\right| \nonumber \\&+ (P^1_1 P^2_3-P^1_3 P^2_1)\left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_3 &{} Q^2_3 \end{array}\right| \nonumber \\= & {} \left| \begin{array}{cc} P^1_1 &{} P^1_2 \\ P^2_1 &{} P^2_2 \end{array}\right| \left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_2 &{} Q^2_2 \end{array}\right| \nonumber \\&+ \left| \begin{array}{cc} P^1_2 &{} P^1_3 \\ P^2_2 &{} P^2_3 \end{array}\right| \left| \begin{array}{cc} Q^1_2 &{} Q^2_2 \\ Q^1_3 &{} Q^2_3 \end{array}\right| + \left| \begin{array}{cc} P^1_1 &{} P^1_3 \\ P^2_1 &{} P^2_3 \end{array}\right| \left| \begin{array}{cc} Q^1_1 &{} Q^2_1 \\ Q^1_3 &{} Q^2_3 \end{array}\right| .\nonumber \\ \end{aligned}$$
(66)

Appendix B: Derivatives of the RKPM analytical expression

We can have direct differentiation of the shape functions and get the corresponding analytical expression:

$$\begin{aligned} \dfrac{\partial }{\partial \alpha }\Psi _I(\varvec{x})= & {} \dfrac{\sum _{1\le l_1<l_2<\cdots<l_{q-1} \le n}H_{l_1 l_2 \cdots l_{q-1} I} \left( \dfrac{\partial }{\partial \alpha } (H_{l_1 l_2 \cdots l_{q-1} p}) \phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q-1}}\phi _I+H_{l_1 l_2 \cdots l_{q-1} p} \dfrac{\partial }{\partial \alpha } (\phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q-1}}\phi _I) \right) }{\sum _{1\le l_1<l_2<\cdots<l_{q}\le n}(H_{l_1 l_2 \cdots l_{q}})^2 \phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q}}}\\ \nonumber&-\dfrac{\left( \sum _{1\le l_1<l_2<\cdots<l_{q-1} \le n}H_{l_1 l_2 \cdots l_{q-1} I} H_{l_1 l_2 \cdots l_{q-1} p} \phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q-1}}\phi _I\right) \left( \sum _{1\le l_1<l_2<\cdots<l_{q}\le n}(H_{l_1 l_2 \cdots l_{q}})^2 \dfrac{\partial }{\partial \alpha }(\phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q}}) \right) }{\left( \sum _{1\le l_1<l_2<\cdots <l_{q}\le n}(H_{l_1 l_2 \cdots l_{q}})^2 \phi _{l_1}\phi _{l_2}\cdots \phi _{l_{q}}\right) ^2}. \end{aligned}$$
(67)

with

$$\begin{aligned} \dfrac{\partial }{\partial \alpha } H_{l_1 l_2 \ldots l_{q-1} p}=\mathrm {det}\left( \left[ \varvec{p}_{l_1},\varvec{p}_{l_2},\ldots ,\varvec{p}_{l_{q-1}}, \dfrac{\partial }{\partial \alpha } \varvec{p}(\varvec{x}) \right] \right) . \end{aligned}$$
(68)

\(\alpha \) is an arbitrary variable.

If kernel functions \(\phi _I\) are constant, (67) reduces to

$$\begin{aligned}&\dfrac{\partial }{\partial \alpha }\Psi _I(\varvec{x})\nonumber \\&\quad =\dfrac{\sum _{1\le l_1<l_2<\cdots<l_{q-1} \le n}H_{l_1 l_2 \ldots l_{q-1} I} \dfrac{\partial }{\partial \alpha } (H_{l_1 l_2 \ldots l_{q-1} p}) \phi _{l_1}\phi _{l_2}\ldots \phi _{l_{q-1}}\phi _I}{\sum _{1\le l_1<l_2<\cdots <l_{q}\le n}(H_{l_1 l_2 \ldots l_{q}})^2 \phi _{l_1}\phi _{l_2}\ldots \phi _{l_{q}}}. \end{aligned}$$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tang, S. & Liu, W.K. Analytical expression of RKPM shape functions. Comput Mech 66, 1343–1352 (2020). https://doi.org/10.1007/s00466-020-01904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01904-3

Keywords

Navigation