Skip to main content
Log in

Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A general arbitrary order recursive gradient formulation is presented for meshfree approximation. According to this method, an nth order recursive meshfree gradient is formulated as an interpolation of the (n − 1)th order gradients by standard first order meshfree gradients, which finally can be expressed as a successive multiplication of standard first order meshfree gradients. This formulation avoids the complex and costly computation of conventional high order derivatives of meshfree shape functions. One crucial ingredient of the proposed methodology is that the resulting recursive meshfree gradients with a pth degree basis function not only meet the conventional pth order consistency conditions for standard gradients, but also satisfy (p + 1)th to (p + n − 1)th extra high order consistency conditions. This important property leads to superconvergent meshfree collocation algorithms and here we focus on the classical fourth order Kirchhoff plate problems. An accuracy analysis of the proposed recursive gradient meshfree collocation formulation for Kirchhoff plates reveals that superconvergence is simultaneously achieved for both even and odd degrees of basis functions. More specifically, two and four additional orders of accuracy are respectively gained by the proposed method for even and odd degree basis functions, compared with the standard meshfree collocation scheme. Furthermore, the extra high order consistency conditions of recursive meshfree gradients enable superconvergent meshfree collocation analysis of Kirchhoff plates using low order basis functions of less than 4th degree, while the standard meshfree collocation approach requires at least a 4th degree basis function to maintain convergence. The accuracy and efficiency of the proposed methodology are holistically demonstrated by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Lu YY, Gu L (1994) Element-free Gakerkin methods. Int J Numer Methods Eng 37:229–256

    MATH  Google Scholar 

  3. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    MathSciNet  MATH  Google Scholar 

  4. Duarte CA, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139:237–262

    MATH  Google Scholar 

  5. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758

    MathSciNet  MATH  Google Scholar 

  6. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    MathSciNet  MATH  Google Scholar 

  7. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61:2159–2181

    MathSciNet  MATH  Google Scholar 

  8. Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65:2167–2202

    MathSciNet  MATH  Google Scholar 

  9. Wu CT, Park CK, Chen JS (2011) A generalized approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85:693–722

    MATH  Google Scholar 

  10. Wang D, Chen P (2014) Quasi-convex reproducing kernel meshfree method. Comput Mech 54:689–709

    MathSciNet  MATH  Google Scholar 

  11. Yreux E, Chen JS (2017) A quasi-linear reproducing kernel particle method. Int J Numer Methods Eng 109:1045–1064

    MathSciNet  Google Scholar 

  12. Koester J, Chen JS (2019) Conforming window functions for meshfree methods. Comput Methods Appl Mech Eng 347:588–621

    MathSciNet  Google Scholar 

  13. Atluri SN, Shen SP (2002) The meshless local Petrov–Galerkin (MLPG) method. Tech Science, Henderson

    MATH  Google Scholar 

  14. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  15. Zhang X, Liu Y (2004) Meshless methods. Tsinghua University Press, Beijing

    Google Scholar 

  16. Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  17. Chen JS, Hillman M, Chi SW (2017) Meshfree methods: progress made after 20 years. J Eng Mech ASCE 143:04017001

    Google Scholar 

  18. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    MathSciNet  MATH  Google Scholar 

  19. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466

    MATH  Google Scholar 

  20. Chen JS, Yoon S, Wu CT (2002) Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 53:2587–2615

    MATH  Google Scholar 

  21. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063

    MathSciNet  MATH  Google Scholar 

  22. Babuška I, Banerjee U, Osborn JE, Li QL (2008) Quadrature for meshless methods. Int J Numer Methods Eng 76:1434–1470

    MathSciNet  MATH  Google Scholar 

  23. Wang D, Chen JS (2008) A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Methods Eng 74:368–390

    MATH  Google Scholar 

  24. Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92:399–424

    MathSciNet  MATH  Google Scholar 

  25. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95:387–418

    MathSciNet  MATH  Google Scholar 

  26. Wang D, Peng H (2013) A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput Mech 51:1013–1029

    MathSciNet  MATH  Google Scholar 

  27. Wang D, Wu J (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    MathSciNet  MATH  Google Scholar 

  28. Wu CT, Chi SW, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng 107:3–30

    MathSciNet  MATH  Google Scholar 

  29. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    MathSciNet  Google Scholar 

  30. Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    MathSciNet  MATH  Google Scholar 

  31. Zerroukat M, Power H, Chen CS (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Methods Eng 42:1263–1278

    MATH  Google Scholar 

  32. Zhang X, Song K, Lu M, Liu X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26:333–343

    MATH  Google Scholar 

  33. Chen W, Tanaka M (2002) A meshless, integration-free, and boundary-only RBF technique. Comput Math Appl 43:379–391

    MathSciNet  MATH  Google Scholar 

  34. Cheng AD, Golberg MA, Kansa EJ, Zammito G (2003) Exponential convergence and H-c multiquadric collocation method for partial differential equations. Numer Methods Partial Differ Equ 19:571–594

    MathSciNet  MATH  Google Scholar 

  35. Wang L, Wang Z, Qian Z (2017) A meshfree method for inverse wave propagation using collocation and radial basis functions. Comput Methods Appl Mech Eng 322:311–350

    MathSciNet  Google Scholar 

  36. Rosenfeld JA, Rosenfeld SA, Dixon WE (2019) A mesh-free pseudospectral approach to estimating the fractional Laplacian via radial basis functions. J Comput Phys 390:306–322

    MathSciNet  Google Scholar 

  37. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    MathSciNet  MATH  Google Scholar 

  38. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866

    MathSciNet  MATH  Google Scholar 

  39. Breitkopf P, Touzot G, Villon P (2000) Double grid diffuse collocation method. Comput Mech 25:199–206

    MathSciNet  MATH  Google Scholar 

  40. Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Methods Eng 47:1083–1121

    MATH  Google Scholar 

  41. Kim DW, Liu WK, Yoon YC, Belytschko T, Lee SH (2007) Meshfree point collocation method with intrinsic enrichment for interface problems. Comput Mech 40:1037–1052

    MathSciNet  MATH  Google Scholar 

  42. Chen JS, Hu W, Hu HY (2008) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Methods Eng 75:600–627

    MathSciNet  MATH  Google Scholar 

  43. Chen JS, Wang L, Hu HY, Chi SW (2009) Subdomain radial basis collocation method for heterogeneous media. Int J Numer Methods Eng 80:163–190

    MathSciNet  MATH  Google Scholar 

  44. Wang L, Chen JS, Hu HY (2010) Subdomain radial basis collocation method for fracture mechanics. Int J Numer Methods Eng 83:851–876

    MathSciNet  MATH  Google Scholar 

  45. Chi SW, Chen JS, Hu HY (2014) A weighted collocation on the strong form with mixed radial basis approximations for incompressible linear elasticity. Comput Mech 53:309–324

    MathSciNet  MATH  Google Scholar 

  46. Yang JP, Guan PC, Fan CM (2016) Weighted reproducing kernel collocation method and error analysis for inverse Cauchy problems. Int J Appl Mech 8:1650030

    Google Scholar 

  47. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part I-formulation and theory. Int J Numer Methods Eng 45:251–288

    MATH  Google Scholar 

  48. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, Part II-applications. Int J Numer Methods Eng 45:289–317

    Google Scholar 

  49. Chi SW, Chen JS, Hu HY, Yang JP (2013) A gradient reproducing kernel collocation method for boundary value problems. Int J Numer Methods Eng 93:1381–1402

    MathSciNet  MATH  Google Scholar 

  50. Mahdavi A, Chi SW, Zhu H (2019) A gradient reproducing kernel collocation method for high order differential equations. Comput Mech 64:1421–1454

    MathSciNet  MATH  Google Scholar 

  51. Yoon YC, Song JH (2014) Extended particle difference method for moving boundary problems. Comput Mech 54:723–743

    MathSciNet  MATH  Google Scholar 

  52. Gao XW, Gao L, Zhang Y, Cui M, Lv J (2019) Free element collocation method: a new method combining advantages of finite element and meshfree methods. Comput Struct 215:10–26

    Google Scholar 

  53. Hillman M, Chen JS (2018) Performance comparison of nodally integrated Galerkin meshfree methods and nodally collocated strong form meshfree methods. Adv Comput Plast Comput Methods Appl Sci 46:145–164

    MathSciNet  Google Scholar 

  54. Auricchio F, Da Veiga LB, Hughes TJR, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math Model Methods Appl Sci 20:2075–2107

    MathSciNet  MATH  Google Scholar 

  55. Schillinger D, Evans JA, Reali A, Scott MA, Hughes TJR (2013) Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput Methods Appl Mech Eng 267:170–232

    MathSciNet  MATH  Google Scholar 

  56. Reali A, Gomez H (2015) An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates. Comput Methods Appl Mech Eng 284:623–636

    MathSciNet  MATH  Google Scholar 

  57. Maurin F, Greco F, Coox L, Vandepitte D, Desmet W (2018) Isogeometric collocation for Kirchhoff–Love plates and shells. Comput Methods Appl Mech Eng 329:396–420

    MathSciNet  Google Scholar 

  58. Gomez H, De Lorenzis L (2016) The variational collocation method. Comput Methods Appl Mech Eng 309:152–181

    MathSciNet  Google Scholar 

  59. Montardini M, Sangalli G, Tamellini L (2017) Optimal-order isogeometric collocation at Galerkin superconvergent points. Comput Methods Appl Mech Eng 316:741–757

    MathSciNet  Google Scholar 

  60. Fahrendorf F, De Lorenzis L, Gomez H (2018) Reduced integration at superconvergent points in isogeometric analysis. Comput Methods Appl Mech Eng 328:390–410

    MathSciNet  Google Scholar 

  61. Jia Y, Anitescu C, Zhang YJ, Rabczuk T (2019) An adaptive isogeometric analysis collocation method with a recovery-based error estimator. Comput Methods Appl Mech Eng 345:52–74

    MathSciNet  Google Scholar 

  62. Wang D, Wang J, Wu J (2018) Superconvergent gradient smoothing meshfree collocation method. Comput Methods Appl Mech Eng 340:728–766

    MathSciNet  Google Scholar 

  63. Qi D, Wang D, Deng L, Xu X, Wu CT (2019) Reproducing kernel meshfree collocation analysis of structural vibrations. Eng Comput 36:734–764

    Google Scholar 

  64. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    MathSciNet  MATH  Google Scholar 

  65. Ames WF (2014) Numerical methods for partial differential equations. Academic Press, London

    Google Scholar 

  66. Idesman A, Dey B (2017) The use of the local truncation error for the increase in accuracy of the linear finite elements for heat transfer problems. Comput Methods Appl Mech Eng 319:52–82

    MathSciNet  Google Scholar 

  67. Shen J, Tang T, Wang L (2011) Spectral methods: algorithms, analysis and applications. Springer, Berlin

    MATH  Google Scholar 

  68. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (11772280, 11472233) and the Fundamental Research Funds for the Central Universities of China (20720190120) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, J. & Wu, J. Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates. Comput Mech 65, 877–903 (2020). https://doi.org/10.1007/s00466-019-01799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01799-9

Keywords

Navigation