Skip to main content
Log in

Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent \(J_2\)-plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase field simulation of solidification. Annu Rev Mater Res 32:63–94

    Article  Google Scholar 

  2. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  3. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad Comput Coupl Phase Diag Thermochem 32(2):268–294

    Article  Google Scholar 

  4. Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107

    Article  Google Scholar 

  5. Mamivand M, Zaeem MA, El Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311

    Article  Google Scholar 

  6. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

    Article  MathSciNet  Google Scholar 

  7. Schneider D, Schoof E, Huang Y, Selzer M, Nestler B (2016) Phase-field modeling of crack propagation in multiphase systems. Comput Methods Appl Mech Eng 312:186–195

    Article  MathSciNet  Google Scholar 

  8. Chen L-Q, Khachaturyan AG (1991) Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metall Mater 39:2533–2551

    Article  Google Scholar 

  9. Uehara T, Tsujino T, Ohno N (2007) Elasto-plastic simulation of stress evolution during grain growth using a phase field model. J Cryst Growth 300:530–537

    Article  Google Scholar 

  10. Schmitt R, Müller R, Skorupski R, Smaga M, Eifler D (2013) A phase field approach for martensitic transformations in elastoplastic materials. PAMM 13:213–214

    Article  Google Scholar 

  11. Schneider D, Schmid S, Selzer M, Böhlke T, Nestler B (2015) Small strain elasto-plastic multiphase-field model. Comput Mech 55:27–35

    Article  MathSciNet  Google Scholar 

  12. Ubachs RLJM, Schreurs PJG, Geers MGD (2004) A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. J Mech Phys Solids 52:1763–1792

    Article  Google Scholar 

  13. Yamanaka A, Takaki T, Tomita Y (2008) Elastoplastic phase-field simulation of self- and plastic accommodations in cubic—tetragonal martensitic transformation. Mater Sci Eng A 491:378–384

    Article  Google Scholar 

  14. Gaubert A, Le Bouar Y, Finel A (2010) Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philos Mag 90:375–404

    Article  Google Scholar 

  15. De Rancourt V, Ammar K, Appolaire B, Forest S (2016) Homogenization of viscoplastic constitutive laws within a phase field approach. J Mech Phys Solids 88:291–319

    Article  MathSciNet  Google Scholar 

  16. Yamanaka A, Takaki T (2009) Crystal plasticity phase-field simulation of deformation behavior and microstructure. In: Proc. X int. conf. on comput. plast. (vol 462, pp 1–4)

  17. Schmitt R, Kuhn C, Bhattacharya K (2014) Crystal plasticity and martensitic transformations—a phase field approach. Sci J Fundam Appl Eng Mech 34:23–38

    Google Scholar 

  18. Schmitt R, Kuhn C, Mueller R (2015) On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface. Contin Mech Thermodyn 29:957–968

    Article  MathSciNet  Google Scholar 

  19. Leonard F, Desai R (1998) Spinodal decomposition and dislocation lines in thin films and bulk materials. Phys Rev B 58:8277–8288

    Article  Google Scholar 

  20. Hu SY, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49:1879–1890

    Article  Google Scholar 

  21. Wang YU, Jin YM, Cuitino AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater 49:1847–1857

    Article  Google Scholar 

  22. Rodney D, Le Bouar Y, Finel A (2003) Phase field methods and dislocations. Acta Mater 51:17–30

    Article  Google Scholar 

  23. Zhou N, Shen C, Mills MJ, Wang Y (2007) Phase field modeling of channel dislocation activity and gamma prime rafting in single crystal Ni–Al. Acta Mater 55:5369–5381

    Article  Google Scholar 

  24. Ammar K, Appolaire B, Cailletaud G, Forest S (2009) Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur J Comput Mech 18:485–523

    Article  Google Scholar 

  25. Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:1–6

    Article  Google Scholar 

  26. Schneider D, Schwab F, Schoof E, Reiter A, Herrmann C, Selzer M, Böhlke T, Nestler B (2017) On the stress calculation within phase-field approaches: a model for finite deformations. Comput Mech 60(2):203–217

    Article  MathSciNet  Google Scholar 

  27. Beckermann C, Diepers H-J, Steinbach I, Karma A, Tong X (1999) Modeling melt convection in phase-field simulations of solidification. J Comput Phys 154:468–496

    Article  Google Scholar 

  28. Moelans N, Blanpain B, Wollants P (2008) Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys Rev B 78:024113

    Article  Google Scholar 

  29. Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134:385–393

    Article  MathSciNet  Google Scholar 

  30. Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, Berlin

    Book  Google Scholar 

  31. Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086

    Article  Google Scholar 

  32. Schneider D, Tschukin O, Choudhury A, Selzer M, Böhlke T, Nestler B (2015) Phase-field elasticity model based on mechanical jump conditions. Comput Mech 55:887–901

    Article  MathSciNet  Google Scholar 

  33. Ammar K, Appolaire B, Forest S, Cottura M, Bouar YL, Finel A (2014) Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. Meccanica 49:2699–2717

    Article  MathSciNet  Google Scholar 

  34. Ostwald R, Bartel T, Menzel A (2011) A one-dimensional computational model for the interaction of phase-transformations and plasticity. Int J Struct Changes Sol 3:63–82

    Google Scholar 

  35. Simo J C, Hughes T J R (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  36. Schneider D (2017) Phasenfeldmodellierung mechanisch getriebener Grenzflaechenbewegungen in mehrphasigen Systemen, 2017

  37. Yeddu HK, Lookman T, Saxena A (2013) Strain-induced martensitic transformation in stainless steels: a three-dimensional phase-field study. Acta Mater 61:6972–6982

    Article  Google Scholar 

  38. Heo T, Chen L (2014) Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta Mater 76:68–81

    Article  Google Scholar 

  39. Xu G, Wang C, Beltrán J I, LLorca J, Cui Y (2016) Landau modeling of dynamical nucleation of martensite at grain boundaries under local stress. Comput Mater Sci 118:103–111

    Article  Google Scholar 

  40. Khachaturyan A G (1983) Theory of structural transformations in solids. Wiley, New York

    Google Scholar 

  41. Yamanaka A, Takaki T, Tomita Y (2010) Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal. Int J Mech Sci 52:245–250

    Article  Google Scholar 

  42. Schneider D, Schoof E, Tschukin O, Reiter A, Herrmann C, Schwab F, Selzer M, Nestler B (2017) Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput Mech 1–19.

  43. Schoof E, Schneider D, Streichhan N, Mittnacht T, Selzer M, Nestler B (2018) Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int J Solids Struct 134:181–194

    Article  Google Scholar 

  44. Guo XH, Shi S-Q, Ma XQ (2005) Elastoplastic phase field model for microstructure evolution. Appl Phys Lett 87:221910

    Article  Google Scholar 

  45. Yeddu HK, Borgenstam A, Hedström P, Agren J (2012) A phase-field study of the physical concepts of martensitic transformations in steels. Mater Sci Eng A 538:173–181

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Daimler AG for funding our investigations. Additionally the authors thank the German Research Foundation for funding through the graduate schools GRK 1483 and GRK 2078. Furthermore, support by the Helmholtz program RE is acknowledged. The authors gratefully acknowledge the editorial support by Leon Geisen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Herrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, C., Schoof, E., Schneider, D. et al. Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions. Comput Mech 62, 1399–1412 (2018). https://doi.org/10.1007/s00466-018-1570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1570-0

Keywords

Navigation