Skip to main content
Log in

A meshfree method for bending and failure in non-ordinary peridynamic shells

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The peridynamic theory of solid mechanics offers an integral based alternative to traditional continuum models based on partial differential equations. This formulation is particularly advantageous when applied to material failure problems that result in discontinuous displacement fields. This paper presents a meshfree implementation of a state-based peridynamic bending model based on the idea of rotational springs between pairs of peridynamic bonds. Energy-based analysis determines the properties of these bond pairs for a brittle material, resulting in a constitutive model that naturally gives rise to localized damage and crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bessa M, Foster J, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264

    Article  MathSciNet  MATH  Google Scholar 

  2. Foster J, Silling S, Chen W (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258. doi:10.1002/nme.2725

  3. Foster J, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–988. doi:10.1615/IntJMultCompEng.2011002407

  4. Fuller E Jr (1979) An evaluation of double torsion testing-analysis. Fract Mech Appl Brittle Mater ASTM STP 678:3–18

    Article  Google Scholar 

  5. Moyer ET, Miraglia MJ (2014) Peridynamic solutions for timoshenko beams. Engineering 6(06):304. doi:10.4236/eng.2014.66034

    Article  Google Scholar 

  6. O’Grady J, Foster JT (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183. doi:10.1016/j.ijsolstr.2014.05.014

    Article  Google Scholar 

  7. O’Grady J, Foster JT (2014) Peridynamic plates and flat shells: a non-ordinary, state-based model. Int J Solids Struct 51(25):4572–4579. doi:10.1016/j.ijsolstr.2014.09.003

    Article  Google Scholar 

  8. Sala M, Spotz WF, Heroux MA (2008) PyTrilinos: high-perfor-mance distributed-memory solvers for Python. ACM Trans Math Softw (TOMS) 34(2):1–33

  9. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209. doi:10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Silling S, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184. doi:10.1007/s10659-007-9125-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17):1526–1535. doi:10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  12. Taylor M, Steigmann DJ (2013) A two-dimensional peridynamic model for thin plates. Math Mech Solids. doi:10.1177/1081286513512925

Download references

Acknowledgments

This work was funded by grant number W911NF-11-1-0208 from the United States Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James O’Grady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Grady, J., Foster, J. A meshfree method for bending and failure in non-ordinary peridynamic shells. Comput Mech 57, 921–929 (2016). https://doi.org/10.1007/s00466-016-1269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1269-z

Keywords

Navigation