Skip to main content
Log in

A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Note that these are relative degrees-of-freedom since the rotation occurs between configurations \(\Omega _{b}\) and \(\Omega _{a}\).

  2. Note that in this Section, and for reasons of clarity, we only consider conservative problems.

References

  1. Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New York

    MATH  Google Scholar 

  2. Antman SS, Marlow RS (1991) Material constraints, Lagrange multipliers, and compatibility. Arch Ration Mech Anal 116:257–299

    Article  MATH  MathSciNet  Google Scholar 

  3. Antman SS, Schuricht F (1999) Incompressibility in rod and shell theories. Math Model Numer Anal 33:289–304

    Article  MATH  MathSciNet  Google Scholar 

  4. Areias P Simplas. http://www.simplas-software.com

  5. Areias P, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682

    Article  MATH  Google Scholar 

  6. Areias P, César de Sá JM, Cardoso R (2014) A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput 18:950–973

    Google Scholar 

  7. Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary bi-dimensional finite strain cohesive crack propagation. Comput Mech 45(1):61–75

    Article  MATH  MathSciNet  Google Scholar 

  8. Areias P, Dias-da-Costa D, Pires EB, Infante Barbosa J (2012) A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput Mech 49:545–564

    Article  MATH  MathSciNet  Google Scholar 

  9. Areias P, Dias-da Costa D, Pires EB, Van Goethem N (2013) Asymmetric quadrilateral shell elements for finite strains. Comput Mech 52(1):81–97

    Article  MATH  MathSciNet  Google Scholar 

  10. Areias P, Dias-da Costa D, Sargado JM, Rabczuk T (2013) Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Comput Mech 52:1429–1443

    Article  MATH  Google Scholar 

  11. Areias P, Garção J, Pires EB, Infante Barbosa J (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48:385–406

    Article  MATH  MathSciNet  Google Scholar 

  12. Areias P, Rabczuk T (2010) Smooth finite strain plasticity with non-local pressure support. Int J Numer Methods Eng 81:106– 134

    MATH  Google Scholar 

  13. Areias P, Rabczuk T, Dias da Costa D, Pires EB (2012) Implicit solutions with consistent additive and multiplicative components. Finite Elem Anal Des 57:15–31

    Article  Google Scholar 

  14. Areias P, Rabczuk T, Dias-da Costa D (2012) Asymmetric shell elements based on a corrected updated-Lagrangian approach. Comput Model Eng Sci 88(6):475–506 Times Cited: 0

    MathSciNet  Google Scholar 

  15. Areias P, Ritto-Corrêa M, Martins JAC (2010) Finite strain plasticity, the stress condition and a complete shell model. Comput Mech 45:189–209

    Article  MATH  MathSciNet  Google Scholar 

  16. Areias P, Song J-H, Belytschko T (2005) A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints. Int J Numer Methods Eng 64:1166–1206

    Article  MATH  Google Scholar 

  17. Basar Y, Ding Y (1992) Finite rotation shell elements for the analysis of finite rotation shell problems. Int J Numer Methods Eng 34:165–169

    Article  Google Scholar 

  18. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  19. Belytschko T, Wong BL (1989) Assumed strain stabilization procedure for the 9-node Lagrance shell element. Int J Numer Methods Eng 28:385–414

    Article  MATH  Google Scholar 

  20. Bonet J, Burton AJ (1998) A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comp Method Appl Mech 162:151–164

    Article  MATH  Google Scholar 

  21. Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18:950–973

    Article  MATH  Google Scholar 

  22. Chen C, Mangasarian OL (1996) A class of smoothing functions for nonlinear and mixed complementarity problems. Comput Optim Appl 5:97–138

    Article  MATH  MathSciNet  Google Scholar 

  23. Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35(1):63–94

    Article  MATH  Google Scholar 

  24. Chróścielewski J, Makowski J, Stumpf H (1997) Finite element analysis of smooth, folded and multi-shell structures. Comp Method Appl Mech 141:1–46

    Article  MATH  Google Scholar 

  25. Chroscielewski J, Witkowski W (2006) Four-node semi-EAS element in six-field nonlinear theory of shells. Int J Numer Methods Eng 68:1137–1179

    Article  MATH  MathSciNet  Google Scholar 

  26. Crisfield MA, Tan D (2001) Large-strain elasto-plastic shell analysis using low-order elements. Eng Comput 18:255–285

    Article  MATH  Google Scholar 

  27. Dassault Systèmes (2011) Providence. ABAQUS Documentation

  28. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  29. Hughes TJR, Carnoy E (1983) Nonlinear finite element formulation accounting for large membrane stress. Comp Method Appl Mech 39:69–82

    Article  MATH  Google Scholar 

  30. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells. Part I: Three-dimensional shells. Comp Method Appl Mech 26:331–362

    Article  MATH  Google Scholar 

  31. Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech-ASME 48(3):587–596

    Article  MATH  Google Scholar 

  32. Ivannikov V (2014) A geometrically exact Kirchhoff-Love shell model: theoretical aspects and a unified approach for interpolative and non-interpolative approximations. PhD thesis, Instituto Superior Técnico, Avenida Rovisco Pais 1049–001 Lisbon

  33. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327

    Article  Google Scholar 

  34. Lee NS, Bathe KJ (1993) Effects of element distortions on the performance of isoparametric elements. Int J Numer Methods Eng 36:3553–3576

    Article  MATH  Google Scholar 

  35. Liu WK, Guo Y, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comp Method Appl Mech 154:69–132

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu WK, Hu Y-K, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37:3263–3289

    Article  MATH  MathSciNet  Google Scholar 

  37. Lubliner J (1990) Plasticity theory. Macmillan, New York

    MATH  Google Scholar 

  38. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:1–20

    Article  Google Scholar 

  39. Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29:483–514

    Article  MATH  MathSciNet  Google Scholar 

  40. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola

    Google Scholar 

  41. Park KC, Stanley GM (1986) A curved C0 shell element based on assumed natural-coordinate strains. J Appl Mech 53:278–290

    Article  MATH  Google Scholar 

  42. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695

    Article  MATH  Google Scholar 

  43. Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193

    Article  MATH  Google Scholar 

  44. Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. Comput Model Eng Sci 16(2):115–130

    Google Scholar 

  45. Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72:524–548

    Article  MATH  MathSciNet  Google Scholar 

  46. Sansour C, Kollmann FG (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24:435–447

  47. Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comp Method Appl Mech 99:61–112

    Article  MATH  MathSciNet  Google Scholar 

  48. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449

    Article  MATH  MathSciNet  Google Scholar 

  49. Simo JC, Fox DD, Rifai MS (1989) Geometrically exact stress resultant shell models: Formulation and computational aspects of the nonlinear theory. In: Noor AK, Belytschko T, Simo JC (eds) Analytical and computational models of shells, volume 3 of CED, vol 3. ASME, San Francisco, pp 161–190

    Google Scholar 

  50. Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York (Corrected Second Printing edition)

    Google Scholar 

  51. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comp Method Appl Mech 51:177–208

    Article  MATH  MathSciNet  Google Scholar 

  52. Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, New York

    Book  Google Scholar 

  53. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666

    Article  MATH  Google Scholar 

  54. Wagner W, Klinkel S, Gruttmann F (2002) Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Comput Struct 80:857–869

    Article  Google Scholar 

  55. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp Method Appl Mech 79:173–202

    Article  MATH  Google Scholar 

  56. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer models in structural mechanics. Academic Press, New York, pp 43–57

    Chapter  Google Scholar 

  57. Wolfram Research Inc. (2007) Mathematica, Version 6.0, Champaign

Download references

Acknowledgments

The first author thanks Professor Carlos Tiago (IST, Lisbon) for in-depth advice leading to this work. The authors gratefully acknowledge financing from the “Fundação para a Ciência e a Tecnologia” under the Project PTDC/EME-PME/108751 and the Program COMPETE FCOMP-01-0124-FEDER-010267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areias, P., Rabczuk, T., de Sá, J.C. et al. A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Comput Mech 55, 673–696 (2015). https://doi.org/10.1007/s00466-015-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1130-9

Keywords

Navigation