Skip to main content
Log in

Generation of a cokriging metamodel using a multiparametric strategy

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the course of designing structural assemblies, performing a full optimization is very expensive in terms of computation time. In order or reduce this cost, we propose a multilevel model optimization approach. This paper lays the foundations of this strategy by presenting a method for constructing an approximation of an objective function. This approach consists in coupling a multiparametric mechanical strategy based on the LATIN method with a gradient-based metamodel called a cokriging metamodel. The main difficulty is to build an accurate approximation while keeping the computation cost low. Following an introduction to multiparametric and cokriging strategies, the performance of kriging and cokriging models is studied using one- and two-dimensional analytical functions; then, the performance of metamodels built from mechanical responses provided by the multiparametric strategy is analyzed based on two mechanical test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson GM, Keane AJ (1999) A case for multi-level optimisation in aeronautical design. Aeronaut J 103(1028): 481–485

    Google Scholar 

  2. Booker AJ, Dennis JE, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struct Multidiscip Optim 17(1): 1–13

    Google Scholar 

  3. Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1): 1–28

    Article  Google Scholar 

  4. Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2): 129–150

    Article  MATH  Google Scholar 

  5. Kravanja S, Silih S, Kravanja Z (2005) The multilevel minlp optimization approach to structural synthesis: the simultaneous topology, material, standard and rounded dimension optimization. Adv Eng Softw 36(9): 568–583

    Article  MATH  Google Scholar 

  6. Kravanja S, Soršak A, Kravanja Z (2003) Efficient multilevel minlp strategies for solving large combinatorial problems in engineering. Optim Eng 4(1): 97–151

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu B, Haftka RT, Watson LT (2004) Global-local structural optimization using response surfaces of local optimization margins. Struct Multidiscip Optim 27(5): 352–359

    Article  Google Scholar 

  8. Alexandrov NM, Lewis RM (2000) Analytical and computational aspects of collaborative optimization. NASA Technical Memorandum 210104

  9. Chen TY, Yang CM (2005) Multidisciplinary design optimization of mechanisms. Adv Eng Softw 36(5): 301–311

    Article  MATH  Google Scholar 

  10. Conceição António CA (2002) A multilevel genetic algorithm for optimization of geometrically nonlinear stiffened composite structures. Struct Multidiscip Optim 24(5): 372–386

    Article  Google Scholar 

  11. Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, New York

    Book  Google Scholar 

  12. Le Riche R, Gaudin J (1998) Design of dimensionally stable composites by evolutionary optimization. Compos Struct 41(2): 97–111

    Article  Google Scholar 

  13. Theocaris PS, Stavroulakis GE (1998) Multilevel optimal design of composite structures including materials with negative poisson’s ratio. Struct Multidiscip Optim 15(1): 8–15

    Google Scholar 

  14. Keane AJ, Petruzzelli N (2000) Aircraft wing design using ga-based multi-level strategies. In: AIAA paper 2000-4937. AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, USA, 06–08 Sep 2000. American Institute of Aeronautics and Astronautics

  15. Engels H, Becker W, Morris A (2004) Implementation of a multi-level optimisation methodology within the e-design of a blended wing body. Aerosp Sci Technol 8(2): 145–153

    Article  Google Scholar 

  16. Chattopadhyay A, McCarthy TR, Pagaldipti N (1995) Multilevel decomposition procedure for efficient design optimization of helicopter rotor blades. AIAA J 33(2): 223–230

    Article  Google Scholar 

  17. El-Sayed MEM, Hsiung CK (1991) Optimum structural design with parallel finite element analysis. Comput Struct 40(6): 1469–1474

    Article  MATH  Google Scholar 

  18. Umesha PK, Venuraju MT, Hartmann D, Leimbach KR (2005) Optimal design of truss structures using parallel computing. Struct Multidiscip Optim 29(4): 285–297

    Article  Google Scholar 

  19. Dunham B, Fridshal D, Fridshal R, North JH (1963) Design by natural selection. Synthese 15(1): 254–259

    Article  Google Scholar 

  20. El-Beltagy MA, Keane AJ (1999) A comparison of various optimization algorithms on a multilevel problem. Eng Appl Artif Intell 12(5): 639–654

    Article  Google Scholar 

  21. Elby D, Averill RC, Punch WF, Goodman ED (1998) Evaluation of injection island ga performance on flywheel design optimisation. In: Proceedings of Third International Conference of Adaptive Computing in Design and Manufacture, pp 121–136

  22. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  23. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B (Methodological) 13(1): 1–45

    MathSciNet  MATH  Google Scholar 

  24. Simpson TW, Mauery TM, Korte JJ, Mistree F (1998) Multidisciplinary optimization branch. Comparison of response surface and kriging models for multidisciplinary design optimization. In: AIAA paper 98-4758. 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, pp 98–4755

  25. Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  26. McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 5(4): 115–133

    MathSciNet  MATH  Google Scholar 

  27. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76: 1905–1915

    Article  Google Scholar 

  28. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Current Science 78(7): 808–817

    Google Scholar 

  29. Soulier B, Richard L, Hazet B, Braibant V (2003) Crashworthiness optimization using a surrogate approach by stochastic response surface. In: Gogu G, Coutellier D, Chedmail P, Ray P (eds) Recent advances in integrated design and manufacturing in mechanical engineering, pp 159–168, Mai

  30. Cressie N (1990) The origins of kriging. Mathematical Geology 22(3): 239–252

    Article  MathSciNet  MATH  Google Scholar 

  31. Wackernagel H (1995) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    MATH  Google Scholar 

  32. Chung HS, Alonso JJ (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Citeseer

  33. Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum structural design: a review. Struct Multidiscip Optim 5(3): 129–144

    Google Scholar 

  34. Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Multidiscip Optim 14(1): 1–23

    Google Scholar 

  35. Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Springer, New York

    MATH  Google Scholar 

  36. Mandel J (1993) Balancing domain decomposition. Commun Num Methods Eng 9(3): 233–241

    Article  MathSciNet  MATH  Google Scholar 

  37. Le Tallec P (1994) Domain decomposition methods in computational mechanics. Comput Mech Adv 1(2): 121–220

    MathSciNet  MATH  Google Scholar 

  38. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Num Methods Eng 32(6): 1205–1227

    Article  MATH  Google Scholar 

  39. Blanzé C, Champaney L, Cognard JY, Ladevèeze P (1995) A modular approach to structure assembly computations: application to contact problems. Eng Comput 13(1): 15–32

    Google Scholar 

  40. Ladevèze P (1985) Sur une famille d’algorithmes en mécanique des structures. Compte rendu de l’académie des Sciences 300(2): 41–44

    MATH  Google Scholar 

  41. Champaney L, Cognard JY, Ladeveze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73(1-5): 249–266

    Article  MATH  Google Scholar 

  42. Boucard PA, Ladevèze P (1999) Une application de la méthode latin au calcul multirésolution de structures non linéaires. Revue Européenne des Eléments Finis 8: 903–920

    MATH  Google Scholar 

  43. Boucard PA (2001) Application of the latin method to the calculation of response surfaces. In: Proceeding of the First MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, USA, vol 1, pp 78–81, Juin

  44. Allix O, Vidal P (2002) A new multi-solution approach suitable for structural identification problems. Comput Methods Appl Mech Eng 191(25-26): 2727–2758

    Article  MathSciNet  MATH  Google Scholar 

  45. Boucard PA, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Num Methods Eng 57(9): 1259–1281

    Article  MATH  Google Scholar 

  46. Champaney L, Boucard PA, Guinard S (2008) Adaptive multi-analysis strategy for contact problems with friction. Comput Mech 42(2): 305–315

    Article  MATH  Google Scholar 

  47. Soulier B, Boucard PA (2009) A multiparametric strategy for the large-scale multilevel optimization of structural assemblies. In 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal

  48. Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master’s thesis

  49. Matheron G (1962) Traité de géostatistique appliquée, Tome I. Memoires du Bureau de Recherches Geologiques et Minieres, vol 14

  50. Matheron G (1962) Traite de Geostatistique Appliquee, Tome II: Le Krigeage. Memoires du Bureau de Recherches Geologiques et Minieres, No 24

  51. Matheron G (1963) Principles of geostatistics. Econ Geol 58(8): 1246

    Article  Google Scholar 

  52. Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1): 41–47

    Article  MathSciNet  Google Scholar 

  53. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4): 409–423

    Article  MathSciNet  MATH  Google Scholar 

  54. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. Adaptive Computation and Machine Learning, vol 1. MIT Press, Cambridge

  55. Koehler JR, Owen AB (1996) Computer experiments. Handb Stat 13: 261–308

    Article  MathSciNet  Google Scholar 

  56. Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3): 243–255

    Article  MathSciNet  MATH  Google Scholar 

  57. Matérn B (1960) Spatial variation, Lecture notes in statistics, vol 36. Springer, Berlin

  58. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Book  MATH  Google Scholar 

  59. Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1): 135

    Article  MathSciNet  MATH  Google Scholar 

  60. Mardia KV, Watkins AJ (1989) On multimodality of the likelihood in the spatial linear model. Biometrika 76(2): 289

    Article  MathSciNet  MATH  Google Scholar 

  61. Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis, University of Michigan

  62. Warnes JJ, Ripley BD (1987) Problems with likelihood estimation of covariance functions of spatial Gaussian processes. Biometrika 74(3): 640

    Article  MathSciNet  MATH  Google Scholar 

  63. McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239–245

    MathSciNet  MATH  Google Scholar 

  64. Roulet V, Champaney L, Boucard P-A (2011) A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv Eng Softw 42(6): 347–358

    Article  MATH  Google Scholar 

  65. Leary SJ, Bhaskar A, Keane AJ (2004) Global approximation and optimization using adjoint computational fluid dynamics codes. AIAA J 42(3): 631–641

    Article  Google Scholar 

  66. Giannakoglou KC, Papadimitriou DI, Kampolis IC (2006) Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels. Comput Methods Appl Mech Eng 195(44–47): 6312–6329

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Laurent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, L., Boucard, PA. & Soulier, B. Generation of a cokriging metamodel using a multiparametric strategy. Comput Mech 51, 151–169 (2013). https://doi.org/10.1007/s00466-012-0711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0711-0

Keywords

Navigation