Skip to main content
Log in

Simulation of finite-width process zone in concrete-like materials by means of a regularized extended finite element model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Experimental tests carried out on concrete specimens show that a fracture process zone with finite width develops in front of the crack tip. Currently, the only way of modelling a finite-width process zone is to adopt a non-local continuum damage model. This choice, however, precludes the description of macro-cracks, which emerge during the late stage of the cracking process. The eXtended Finite Element Method is a powerful tool for modelling the cracking process. The proposed eXtended Finite Element approach can simulate in a unified and smooth way both the formation of a process zone with finite width and its subsequent collapse into a macro-crack. Weak points of existing formulations, such as the necessity of ad hoc strategies in order to get mesh-independent results, and the sudden loss of stiffness at the transition from the continuous to the discontinuous regime, are overcome. In the case of tensile cracking, effectiveness is tested through comparisons with numerical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Horii H, Ichinomiya T (1991) Observation of fracture process zone by laser speckle technique and governing mechanism in fracture of concrete. Int J Fract 51: 19–29

    Article  Google Scholar 

  2. Bažant Z, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115: 755–767

    Article  Google Scholar 

  3. Wittmann FH, Hu XZ (1991) Fracture process zone in cementitious materials. Int J Fract 51: 3–18

    Article  Google Scholar 

  4. Mihashi H, Nomura N (1996) Correlation between characteristics of fracture process zone and tension-softening properties of concrete. Nucl Eng Des 165: 359–376

    Article  Google Scholar 

  5. Vermilye J, Scholz M (1998) The process zone: a microstructural view of fault growth. J Geophys Res Solid Earth 103: 12223–12237

    Article  Google Scholar 

  6. Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 5: 111–131

    Article  Google Scholar 

  7. Trunk B, Wittmann FH (2001) Influence of size on fracture energy of concrete. Mater Struct 34: 260–265

    Google Scholar 

  8. Hariri K (2002) Application of espi-technique for the assessment of mineral building materials. ASCE engng mech conference, 2–5 June 2002, New York

  9. Muralidhara S, Prasad BK, Eskandari H, Karihaloo BL (2010) Fracture process zone size and true fracture energy of concrete using acoustic emission. Constr Build Mater 24: 479– 486

    Article  Google Scholar 

  10. Benvenuti E, Borino G, Tralli A (2002) A thermodynamically consistent nonlocal formulation for damaging materials. Eur J Mech A Solids 21: 535–553

    Article  MathSciNet  MATH  Google Scholar 

  11. Benvenuti E, Loret B, Tralli A (2004) A unified multifield formulation in nonlocal damage. Eur J Mech A Solids 23: 539–559

    Article  MathSciNet  MATH  Google Scholar 

  12. Benvenuti E, Tralli A (2003) Iterative LCP solvers for non-local loading–unloading conditions. Int J Numer Methods Eng 58: 2343–2370

    Article  MathSciNet  MATH  Google Scholar 

  13. Benvenuti E, Tralli A (2006) The fast Gauss transform for non-local integral FE models. Commun Numer Methods Eng 22: 505–533

    Article  MathSciNet  MATH  Google Scholar 

  14. Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct 41: 351–363

    Article  MATH  Google Scholar 

  15. Le Bellego C, Dubec JF, Pijaudier-Cabot G, Gerarde B (2003) Calibration of nonlocal damage model from size effect tests. Eur J Mech A Solids 22: 33–46

    Article  MATH  Google Scholar 

  16. Skarzynsky L, Tejchman J (2010) Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending. Eur J Mech A Solids 29: 746–760

    Article  Google Scholar 

  17. Iacono C, Sluys LJ, van Mier JGM (2008) Calibration of a higher-order continuum model using global and local data. Eng Fract Mech 75: 4642–4665

    Article  Google Scholar 

  18. Bažant Z, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16: 155–177

    Google Scholar 

  19. de Borst R, Remmers JJC, Needleman A, Abellan MA (2004) Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Methods Eng 28: 583–607

    MATH  Google Scholar 

  20. Hillerborgh A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6: 773–782

    Article  Google Scholar 

  21. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12: 277–296

    Article  MathSciNet  MATH  Google Scholar 

  22. Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15: 319–351

    Article  MATH  Google Scholar 

  23. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314

    Article  MathSciNet  Google Scholar 

  24. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  MATH  Google Scholar 

  25. Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69: 813–833

    Article  Google Scholar 

  26. Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31: 38–48

    Article  MATH  Google Scholar 

  27. Ginera E, Sukumar N, Tarancóna JE, Fuenmayora FJ (2009) An Abaqus implementation of the extended finite element method. Eng Fract Mech 76: 347–368

    Article  Google Scholar 

  28. Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84: 253–304

    MathSciNet  MATH  Google Scholar 

  29. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17. ISSN:0965-0393. doi:10.1088/0965-0393/17/4/043001

  30. Zhang HW, Wu JK, Fu ZD (2010) Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput Mech 45: 623–635

    Article  MATH  Google Scholar 

  31. Moes N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86 86: 358–380

    Article  MathSciNet  MATH  Google Scholar 

  32. Mazars J, Pijaudier-Cabot G (1996) From damage mechanics to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33: 3327–3342

    Article  MATH  Google Scholar 

  33. Jirásek M, Zimmermann T (1996) Embedded crack model. Part II: combination with smeared crack. Int J Numer Methods Eng 50: 1291–1305

    Article  Google Scholar 

  34. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63: 760–788

    Article  MATH  Google Scholar 

  35. Comi C, Mariani S, Perego U (2007) An extended FE strategy for transition form continuum damage to mode I cohesive crack propagation. Int J Numer Anal Methods Geomech 31: 213–238

    Article  MATH  Google Scholar 

  36. Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192: 4581–4607

    Article  MATH  Google Scholar 

  37. Patzák B, Jirásek M (2003) Process zone resolution by extended finite elements. Eng Fract Mech 70: 957–977

    Article  Google Scholar 

  38. Benvenuti E, Ventura G, Tralli A (2008) A regularized XFEM framework for the transition from continuous to discontinuous displacements. Int J Numer Methods Eng 74: 911–944

    Article  MathSciNet  MATH  Google Scholar 

  39. Benvenuti E (2008) A regularized XFEM framework for cohesive interfaces. Comput Methods Appl Mech Eng 197: 4367–4378

    Article  MATH  Google Scholar 

  40. Iarve EV (2003) Mesh independent modelling of cracks by using higher order shape functions. Int J Numer Methods Eng 56: 869–882

    Article  MATH  Google Scholar 

  41. Abbas S, Alizada A, Fries TP (2010) The XFEM for high-gradient solutions in convection-dominated problems. Int J Numer Methods Eng 82: 1044–1072

    Article  MathSciNet  MATH  Google Scholar 

  42. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 73: 1273–1406

    Article  MathSciNet  Google Scholar 

  43. Chen Z (2000) Simulating the evolution of localiztion based on the diffusion of damage. Int J Solids Struct 37: 7465–7479

    Article  MATH  Google Scholar 

  44. Benvenuti E (2004) Damage integration in the strain space. Int J Solids Struct 41: 3167–3191

    Article  MATH  Google Scholar 

  45. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, Berlin

    MATH  Google Scholar 

  46. Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a non-local damage model. Int J Solids Struct 46: 1476–1490

    Article  MATH  Google Scholar 

  47. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66: 761–795

    Article  MathSciNet  MATH  Google Scholar 

  48. Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47: 535–554

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiao QZ, Karihaloo BL, Xiu XL (2007) Incremental-secant modulus iteration scheme and stress recovery process in quasi-brittle materials using XFEM. Int J Numer Methods Eng 69: 2606–2635

    Article  MATH  Google Scholar 

  50. Jager P, Steinmann P, Kuhl E (2008) On local tracking algorithms for the simulation of three-dimensional discontinuities. Comput Mech 42: 395–406

    Article  Google Scholar 

  51. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Comput Methods Appl Mech Eng 199: 2571–2589

    Article  MathSciNet  MATH  Google Scholar 

  52. Denarié E, Saouma VE, Iocco A, Varelas D (2001) Concrete fracture process zone characterization with fiber optics. J Eng Mech 127: 494–502

    Article  Google Scholar 

  53. Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture tests. Eng Fract Mech 35: 117–125

    Article  Google Scholar 

  54. Tornberg AK (2002) Multi-dimensional quadrature of singular and discontinuous functions. BIT Numer Math 42: 644–669

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Benvenuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benvenuti, E., Tralli, A. Simulation of finite-width process zone in concrete-like materials by means of a regularized extended finite element model. Comput Mech 50, 479–497 (2012). https://doi.org/10.1007/s00466-012-0685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0685-y

Keywords

Navigation