Skip to main content
Log in

Space–time SUPG finite element computation of shallow-water flows with moving shorelines

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We show that combination of the Deforming-Spatial-Domain/Stabilized Space–Time and the Streamline-Upwind/Petrov–Galerkin formulations can be used quite effectively for computation of shallow-water flows with moving shorelines. The combined formulation is supplemented with a stabilization parameter that was originally introduced for compressible flows, a compressible-flow shock-capturing parameter adapted for shallow-water flows, and remeshing based on using a background mesh. We present a number of test computations and provide comparisons to theoretical results, experimental data and results computed with nonmoving meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  2. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MathSciNet  MATH  Google Scholar 

  4. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi:10.1016/0045-7825(92)90060-W

    Article  MathSciNet  MATH  Google Scholar 

  5. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi:10.1109/2.237441

    Article  Google Scholar 

  6. Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108: 99–118. doi:10.1016/0045-7825(93)90155-Q

    Article  MathSciNet  MATH  Google Scholar 

  7. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi:10.1016/0045-7825(94)00082-4

    Article  MATH  Google Scholar 

  8. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi:10.1016/0045-7825(94)90029-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid-structure interactions. Int J Numer Methods Fluids 21: 933–953. doi:10.1002/fld.1650211011

    Article  MATH  Google Scholar 

  10. Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi:10.1002/fld.1650211003

    Article  MathSciNet  MATH  Google Scholar 

  11. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi:10.1007/BF00350249

    Article  MATH  Google Scholar 

  12. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340. doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C

    Article  MATH  Google Scholar 

  13. Guler I, Behr M, Tezduyar T (1999) Parallel finite element computation of free-surface flows. Comput Mech 23: 117–123. doi:10.1007/s004660050391

    Article  Google Scholar 

  14. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi:10.1007/s004660050393

    Article  MATH  Google Scholar 

  15. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi:10.1016/S0045-7825(98)00299-0

    Article  MATH  Google Scholar 

  16. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi:10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  17. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi:10.1016/S0045-7825(00)00208-5

    Article  MATH  Google Scholar 

  18. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi:10.1007/BF02897870

    Article  MATH  Google Scholar 

  19. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi:10.1016/S0045-7825(01)00311-5

    Article  MATH  Google Scholar 

  20. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: Numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi:10.1016/S0045-7825(01)00312-7

    Article  MATH  Google Scholar 

  21. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019

    Article  MATH  Google Scholar 

  22. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi:10.1115/1.1530635

    Article  MATH  Google Scholar 

  23. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi:10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  24. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi:10.1016/j.cma.2003.12.046

    Article  MATH  Google Scholar 

  25. van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27: 599–621

    Article  MathSciNet  MATH  Google Scholar 

  26. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi:10.1016/j.cma.2005.08.023

    Article  MathSciNet  MATH  Google Scholar 

  28. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi:10.1016/j.cma.2005.05.050

    Article  MathSciNet  MATH  Google Scholar 

  29. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi:10.1007/s00466-006-0065-6

    Article  MATH  Google Scholar 

  30. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  31. Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416

    Article  MATH  Google Scholar 

  32. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi:10.1016/j.compfluid.2005.02.011

    Article  MathSciNet  MATH  Google Scholar 

  33. Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 233–269

    Google Scholar 

  34. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi:10.1002/fld.1443

    Article  MathSciNet  MATH  Google Scholar 

  35. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi:10.1016/j.compfluid.2005.07.014

    Article  MATH  Google Scholar 

  36. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) Collapse of a liquid column: numerical simulation and experimental validation. Comput Mech 39: 453–476. doi:10.1007/s00466-006-0043-z

    Article  MATH  Google Scholar 

  37. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146

    Article  MATH  Google Scholar 

  38. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi:10.1002/fld.1430

    Article  MathSciNet  MATH  Google Scholar 

  39. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi:10.1007/s00466-006-0093-2

    Article  MATH  Google Scholar 

  40. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi:10.1002/fld.1466

    Article  MATH  Google Scholar 

  41. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi:10.1002/fld.1473

    Article  MathSciNet  MATH  Google Scholar 

  42. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi:10.1002/fld.1497

    Article  MathSciNet  MATH  Google Scholar 

  43. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi:10.1007/s00466-008-0276-0

    Article  MathSciNet  MATH  Google Scholar 

  44. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi:10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  45. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi:10.1007/s00466-008-0260-8

    Article  MATH  Google Scholar 

  46. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi:10.1002/fld.1633

    Article  MathSciNet  MATH  Google Scholar 

  47. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi:10.1007/s00466-008-0299-6

    Article  MathSciNet  MATH  Google Scholar 

  48. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi:10.1007/s00466-008-0325-8

    Article  MATH  Google Scholar 

  49. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  50. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178

    Article  Google Scholar 

  51. Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90

    Article  MATH  Google Scholar 

  52. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi:10.1016/j.cma.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  53. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi:10.1016/j.cma.2008.08.020

    Article  MathSciNet  MATH  Google Scholar 

  54. Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi:10.1115/1.3059576

    Article  Google Scholar 

  55. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  56. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  57. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi:10.1002/cnm.1241

    Article  MATH  Google Scholar 

  58. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi:10.1007/s00466-009-0425-0

    Article  MathSciNet  MATH  Google Scholar 

  59. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi:10.1007/s00466-009-0423-2

    Article  MathSciNet  MATH  Google Scholar 

  60. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi:10.1002/cnm.1289

    Article  MathSciNet  MATH  Google Scholar 

  61. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi:10.1007/s00466-009-0426-z

    Article  MATH  Google Scholar 

  62. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi:10.1007/s00466-009-0439-7

    Article  MATH  Google Scholar 

  63. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  64. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  65. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  66. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416

    Article  Google Scholar 

  67. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi:10.1002/fld.2400

    Article  MATH  Google Scholar 

  68. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253

    Article  MATH  Google Scholar 

  69. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi:10.1002/fld.2348

    Article  MATH  Google Scholar 

  70. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi:10.1002/fld.2360

    Article  MATH  Google Scholar 

  71. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599

    Article  MathSciNet  Google Scholar 

  72. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230: 4137–4152

    Article  MATH  MathSciNet  Google Scholar 

  73. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi:10.1002/fld.2359

    Article  MATH  Google Scholar 

  74. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi:10.1002/fld.2415

    Article  MathSciNet  MATH  Google Scholar 

  75. Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230: 4536–4558

    Article  MATH  MathSciNet  Google Scholar 

  76. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng (published online). doi:10.1002/cnm.1433, Feb 2011

  77. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Computat Mech (published online). doi:10.1007/s00466-011-0571-z, Feb 2011

  78. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech (published online). doi:10.1007/s00466-011-0589-2, March 2011

  79. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech (published online). doi:10.1007/s00466-011-0590-9, April 2011

  80. Takizawa K, Spielman T, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech (to appear)

  81. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2011) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech (to appear)

  82. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2011) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech (to appear)

  83. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech (published online). doi:10.1007/s00466-011-0614-5, July 2011

  84. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech (accepted)

  85. Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids (published online). doi:10.1016/j.compfluid.2011.05.002

  86. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2011) A computational procedure for pre-bending of wind turbine blades. Int J Numer Methods Eng (accepted)

  87. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248. doi:10.1016/S0045-7825(97)00194-1

    Article  MATH  Google Scholar 

  88. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  89. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45: 217–284. doi:10.1016/0045-7825(84)90157-9

    Article  MathSciNet  MATH  Google Scholar 

  90. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  91. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401

    Article  MATH  Google Scholar 

  92. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799

    Article  Google Scholar 

  93. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  Google Scholar 

  94. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94. doi:10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  95. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi:10.1016/S0045-7825(00)00388-1

    Article  MATH  Google Scholar 

  96. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231 (in Japanese)

    Google Scholar 

  97. Aliabadi SK, Tezduyar TE (1993) Space–time finite element computation of compressible flows involving moving boundaries and interfaces. Comput Methods Appl Mech Eng 107: 209–223. doi:10.1016/0045-7825(93)90176-X

    Article  MATH  Google Scholar 

  98. Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104: 397–422. doi:10.1016/0045-7825(93)90033-T

    Article  MATH  Google Scholar 

  99. Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA technical report NASA-CR-204772, NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_1997034954.pdf

  100. Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA paper 83-0125, Reno, Nevada

  101. Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58: 329–339

    Article  MathSciNet  MATH  Google Scholar 

  102. Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63: 97–112

    Article  MathSciNet  MATH  Google Scholar 

  103. Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. In: Advances in finite element analysis in fluid dynamics, FED-vol 123. ASME, New York, pp 21–27

  104. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325. doi:10.1016/0045-7825(86)90003-4

    Article  MATH  Google Scholar 

  105. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430. doi:10.1016/S0045-7825(00)00211-5

    Article  MATH  Google Scholar 

  106. Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21: 465–476. doi:10.1002/cnm.759

    Article  MathSciNet  MATH  Google Scholar 

  107. Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38: 334–343. doi:10.1007/s00466-006-0033-1

    Article  MATH  Google Scholar 

  108. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Fluids, vol 3, Chap 17. Wiley, New York

  109. Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195: 1621–1632. doi:10.1016/j.cma.2005.05.032

    Article  MathSciNet  MATH  Google Scholar 

  110. Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput Fluids 36: 147–159. doi:10.1016/j.compfluid.2005.07.009

    Article  MATH  Google Scholar 

  111. Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38: 469–481. doi:10.1007/s00466-005-0025-6

    Article  MATH  Google Scholar 

  112. Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194: 4797–4823

    Article  MathSciNet  MATH  Google Scholar 

  113. Rispoli F, Saavedra R (2006) A stabilized finite element method based on SGS models for compressible flows. Comput Methods Appl Mech Eng 196: 652–664

    Article  MATH  Google Scholar 

  114. Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int J Numer Methods Fluids 54: 695–706. doi:10.1002/fld.1447

    Article  MathSciNet  MATH  Google Scholar 

  115. Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing. J Appl Mech 76: 021209. doi:10.1115/1.3057496

    Article  Google Scholar 

  116. Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZβ shock-capturing. J Appl Mech 76: 021208. doi:10.1115/1.3062968

    Article  Google Scholar 

  117. Kawahara M, Takeuchi N, Yoshida T (1978) Two step explicit finite element method for tsunami wave-propagation analysis. Int J Numer Methods Eng 12: 331–351

    Article  MATH  Google Scholar 

  118. Kawahara M, Hirano H, Tsubota K, Inagaki K (1982) Selective lumping finite element method for shallow water flow. Int J Numer Methods Fluids 2: 89–112

    Article  MATH  Google Scholar 

  119. Gopalakrishnan TC, Tung CC (1983) Numerical analysis of moving boundary problem in coastal hydrodynamics. Int J Numer Methods Fluids 3: 179–200

    Article  MATH  Google Scholar 

  120. Kawahara M, Kashiyama K (1984) Selective lumping finite element method for nearshore current. Int J Numer Methods Fluids 4: 71–97

    Article  MATH  Google Scholar 

  121. Kawahara M, Umetsu T (1986) Finite element method for moving boundary problems in river flow. Int J Numer Methods Fluids 6: 365–386

    Article  MATH  Google Scholar 

  122. Okamoto T, Kawahara M, Ioki N, Nagaoka H (1992) Two-dimensional wave runup analysis by selective lumping finite element method. Int J Numer Methods Fluids 14: 1219–1243

    Article  MATH  Google Scholar 

  123. Kashiyama K, Ito H, Behr M, Tezduyar T (1995) Three-step explicit finite element computation of shallow water flows on a massively parallel computer. Int J Numer Methods Fluids 21: 885–900. doi:10.1002/fld.1650211009

    Article  MATH  Google Scholar 

  124. Luettich RA, Westerink JJ (1995) Implementation and testing of elemental flooding and drying in the ADCIRC hydrodynamic model. Final contract report DACW39-94-M-5869, US Army Corps of Engineers

  125. Kashiyama K, Saitoh K, Behr M, Tezduyar TE (1997) Parallel finite element methods for large-scale computation of storm surges and tidal flows. Int J Numer Methods n Fluids 24: 1371–1389. doi:10.1002/(SICI)1097-0363(199706)24:12<1371::AID-FLD565>3.0.CO;2-7

    Article  MATH  Google Scholar 

  126. Kashiyama K, Ohba Y, Takagi T, Behr M, Tezduyar T (1999) Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows. Comput Mech 23: 144–150. doi:10.1007/s004660050394

    Article  MATH  Google Scholar 

  127. Kashiyama K, Sugano S, Behr M, Tezduyar TE (1999) Space–time finite element method for shallow water flows considering moving boundaries. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, San Francisco, California (1999)

  128. Heniche M, Secretan Y, Boudreau P, Leclerc M (2000) A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Adv Water Resour 23: 360–371

    Article  Google Scholar 

  129. Dawson C, Westerink JJ, Feyen JC, Pothian D (2006) Edge-based finite element method for shallow water equations. Int J Numer Methods Fluids 52: 63–88

    Article  MATH  Google Scholar 

  130. Kubatko EJ, Bunya S, Dawson C, Westerink JJ (2009) Dynamic p-adaptive Runge-Kutta discontinuous Galerkin methods for the shallow water equations. Comput Methods Appl Mech Eng 198: 1766–1774

    Article  MathSciNet  Google Scholar 

  131. Bunya S, Kubatko EJ, Westerink JJ, Dawson C (2009) Wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput Methods Appl Mech Eng 198: 1548–1562

    Article  MathSciNet  Google Scholar 

  132. Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2010) Space–time SUPG formulation of the shallow-water equations. Int J Numer Methods Fluids 64: 1379–1394. doi:10.1002/fld.2464

    Article  MathSciNet  MATH  Google Scholar 

  133. Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126. doi:10.1016/j.compfluid.2005.07.004

    Article  MATH  Google Scholar 

  134. Tanaka S, Kashiyama K (2006) A new mesh re-generation technique for free surface flow analysis based on interface-tracking method. J Struct Mech Earthq Eng 2: 269–277

    Article  Google Scholar 

  135. Tanaka S, Kashiyama K (2006) ALE finite element method for FSI problems with free surface using mesh re-generation method based on background mesh. Int J Comput Fluid Dyn 20: 229–236

    Article  MATH  Google Scholar 

  136. Dean RG, Dalrymple RA (1984) Water wave mechanics for engineers and scientists. Prentice-Hall, New Jersey

    Google Scholar 

  137. Mittal S, Aliabadi S, Tezduyar T (1999) Parallel computation of unsteady compressible flows with the EDICT. Comput Mech 23: 151–157. doi:10.1007/s004660050395

    Article  MATH  Google Scholar 

  138. Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38: 456–468. doi:10.1007/s00466-006-0056-7

    Article  MATH  Google Scholar 

  139. Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364. doi:10.1007/s00466-006-0045-x

    Article  MathSciNet  MATH  Google Scholar 

  140. Corsini A, Menichini C, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76: 021211. doi:10.1115/1.3062967

    Article  Google Scholar 

  141. Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46: 159–167. doi:10.1007/s00466-009-0441-0

    Article  MathSciNet  MATH  Google Scholar 

  142. Tanaka N (1999) The CIVA method for mesh-free approaches: improvement of the CIP method for n-simplex. Comput Fluid Dyn J 8: 121–127

    Google Scholar 

  143. Carrier GF, Greenspan HP (1958) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4: 97–109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Kashiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takase, S., Kashiyama, K., Tanaka, S. et al. Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48, 293–306 (2011). https://doi.org/10.1007/s00466-011-0618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0618-1

Keywords

Navigation