Skip to main content
Log in

Postbuckling analysis stabilized by penalty springs and intermediate corrections

Generalization of Wright’s scheme from 1968

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Whenever a critical point in a non-linear finite element analysis is reached, an implicit Newton procedure is prevented from proceeding until the stiffness matrix is stabilized. Most stabilization procedures result in a damped Newton scheme. This can cause a reduced convergence rate. Based on documented stabilization strategies, an iterative procedure to reduce negative impact on the convergence rate resulting from the damping is to be proposed here. This will be done by a corrector iteration carried out between two successive equilibrium iterative steps. The equilibrium iteration is a Newton–Raphson scheme. Since the stiffness matrix has already been factorized within the preceding standard equilibrium iterative step, the stiffness matrix will be held constant during the corrector iteration, which in turn allows for a computational efficient treatment of the additional iterations. The proposed procedure has been strongly driven by Wright and Gaylord’s (ASCE J. Struct. Div., 94, 1143–1163, 1968) investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allgower EL, Geoar K (1970) Numerical continuation methods. Springer, Heidelberg, p 388

    Google Scholar 

  2. Bathe K-J (1990) Finite-elemente-methoden. Springer, Heidelberg, p 820

    Google Scholar 

  3. Belytschko T, Liu WK, Moran B (2004) Nonlinear finite elements for continua and structures. Wiley, Chichester, p. 650

    Google Scholar 

  4. Crisfield MA (1981) A fast incremental/iterative solution procedure that handles snap-through. Comput Struct 13: 55–62

    Article  MATH  Google Scholar 

  5. Felippa CA (1987) Penalty spring stabilization of singular Jacobians. Trans ASME 54: 728–729

    MATH  Google Scholar 

  6. Felippa CA (1987) Transversing critical points with penalty springs. In: Pande GN, Middleton J (eds) Proc. Int. Conf. Num. Meth. Engng.: Theory and Applications, NUMETA 87, vol 2: Transient/dynamic analysis and constitutive laws for engineering materials, Swansea, 6–10 July, 1987. Martinus Nijhoff, The Hague C2/1–8

  7. Kröplin B-H, Dinkler D (1982) Eine Methode zur direkten Berechnung von Gleichgewichtslagen im Nachbeulbereich. Ing Arch 51: 415–420

    Article  Google Scholar 

  8. Kröplin B-H, Dinkler D (1982) A creep type strategy used for tracing the load path in elastoplastic post buckling analysis. Comput Methods Appl Mech Eng 32: 365–376

    Article  MATH  Google Scholar 

  9. Kröplin B-H, Dinkler D (1985) Quasi viscous analysis and arc-length-method. In: Middleton P (ed) NUMETA 85 Numerical methods in engineering: theory and applications, vol 2. AA Balkema, Rotterdam, pp 743–747

  10. Lee SL, Manuel FS, Rossow EC (1968) Large deflections and stability of elastic frames. ASCE J Eng Mech Div 94: 521–547

    Google Scholar 

  11. Ma C, Besdo D (1989) Erweiterung eines Iterationsverfahrens zur Lösung stark nichtlinearer Steifigkeitsgleichungen. ZAMM 69: 214–216

    Google Scholar 

  12. Müller M (2005) Procedure for the implicit post buckling analysis with finite elements by stabilizing the global stiffness matrix. PAMM 5: 435–436

    Article  Google Scholar 

  13. Müller M (2006) Passing of instability points by applying a stabilized Newton–Raphson scheme to a finite element formulation. Comput Mech 40: 683–705

    Article  Google Scholar 

  14. Müller M (2008) Postbuckling analysis by applying a completely spring-stabilized extended system. Submitted to Comput Struct

  15. Oliver J, Onate E (1984) A total lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part I: Two-dimensional problems: Shell and plate structures. Int J Num Meth Eng 20: 2253–2281

    Article  MATH  Google Scholar 

  16. Oliver J, Onate E (1986) A total lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part II: arches, frames and axisymmetric shells. Int J Num Meth Eng 23: 253–274

    Article  MATH  Google Scholar 

  17. Ortega JM, Rheinboldt WC (2000) Iterative solution of nonlinear equations in several variables. SIAM Society for Industrial and Applied Mathematics, Philadelphia, p 572

    MATH  Google Scholar 

  18. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2003) Numerical recipes in Fortran 77, vol 1. Cambridge Press, Cambridge, p 933

    Google Scholar 

  19. Ramm E (1976) Geometrisch nichtlineare Elastostatik und Finite Elemente. Bericht Nr 76-2, Inst. f. Baustatik Universität Stuttgart, p 175

  20. Riks E (1972) The application of Newton’s method to the problem of elastic stability. J Appl Mech 39: 1060–1066

    MATH  Google Scholar 

  21. Sabir AB, Lock AC (1973) The application of finite elements to the large deflection geometrically non-linear behaviour of cylindrical shells. In: Brebbia T(eds) Variational methods in engineering, vol 7.. Southampton University Press, Southampton, pp 66–75

    Google Scholar 

  22. Schweizerhof KH (1989) Quasi-Newton Verfahren und Kurvenverfolgungsalgorithmen für die Lösung nichtlinearer Gleichungssysteme in der Strukturmechanik. Schriftenreihe des Institutes für Baustatik Heft 9, University of Karlsruhe, p 162

  23. Seydel R (1988) From equilibrium to chaos—practical bifurcation and stability analysis. Elsevier, New York, p 367

    MATH  Google Scholar 

  24. Sharifi P, Popov EP (1971) Nonlinear buckling analysis of sandwich arches. ASCE J Eng Mech Div 97: 1397–1411

    Google Scholar 

  25. Wagner W, Wriggers P (1988) A simple method for the calculation of postcritical branches. Eng Comput 5: 103–109

    Article  Google Scholar 

  26. Wagner W (1991) Zur Behandlung von Stabilitätsproblemen der Elastostatik mit der Methode der Finiten Elemente. Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Bericht-Nr. F91/1, p 200

  27. Wood RD, Zienkiewicz OC (1977) Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput Struct 7: 725–735

    Article  MATH  MathSciNet  Google Scholar 

  28. Wriggers P, Wagner W, Miehe C (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Comput Methods Appl Mech Eng 70: 329–347

    Article  MATH  Google Scholar 

  29. Wriggers P, Simo JC (1990) A general procedure for the direct computation of turning and bifurcation points. Int J Num Methods Eng 30: 155–176

    Article  MATH  Google Scholar 

  30. Wriggers P (2001) Nichtlineare finite-element-methoden. Springer, Berlin, p 495

    MATH  Google Scholar 

  31. Wright EW, Gaylord EH (1968) Analysis of unbraced multistory steel rigid frames. ASCE J Struct Div 94: 1143–1163

    Google Scholar 

  32. Zienkiewicz OC, Taylor RL (1991) The finite element method, vol. 2, solid and fluid mechanics dynamics and non-linearity. McGraw-Hill, London, p 807

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M. Postbuckling analysis stabilized by penalty springs and intermediate corrections. Comput Mech 42, 631–654 (2008). https://doi.org/10.1007/s00466-008-0264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0264-4

Keywords

Navigation