Skip to main content
Log in

Effect of different intra-abdominal pressure levels on QT dispersion in patients undergoing laparoscopic cholecystectomy

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Hemodynamic changes caused by carbon dioxide (CO2) insufflation occur frequently in patients who undergo laparoscopic surgery. One indicator of these changes is corrected QT dispersion (QTcd), an index of myocardial function. Prolongation of QTcd has been associated with cardiovascular morbidity and mortality. We compared the effects of high-pressure (15 mmHg) and low-pressure (7 mmHg) CO2 pneumoperitoneums on the QT interval, the rate-corrected QT interval (QTc), the QT dispersion (QTd), and the corrected QT dispersion (QTcd) during laparoscopic cholecystectomy.

Methods

Twenty consecutive patients were in a low-pressure pneumoperitoneum group and 32 were in a high-pressure pneumoperitoneum group. A 12-lead electrocardiogram was used to monitor cardiac variables. In all patients, serial electrocardiograms were recorded before anesthesia induction (baseline), immediately after the pneumoperitoneum had been created, every 15 minutes during CO2 insufflation, and 5 minutes after deflation. Two observers measured the QT intervals independently, and the QTcd was calculated using Bazett’s formula.

Results

The QT interval and the QTc interval did not change significantly during the study in either group. The QTd and QTcd in the high-pressure pneumoperitoneum group increased significantly during CO2 insufflation and were significantly higher in the high-pressure pneumoperitoneum group compared with the low-pressure pneumoperitoneum group. Changes caused by CO2 insufflation were reversible.

Conclusions

Statistically significant increases of QTd and QTcd, which are associated with an increased risk of arrhythmias and cardiac events, occur during CO2 insufflation in both high-pressure and low-pressure pneumoperitoneums. QTd and QTcd were significantly higher in the high-pressure pneumoperitoneum group than they were in the low-pressure pneumoperitoneum group. QT interval changes were not related to anesthetic agents, surgical stress, hypercapnia, or duration of CO2 insufflation. Increased intra-abdominal pressure may have caused these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McLaughlin JG, Scheeres DE, Dean RJ, Bonnell BW (1995) The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc 9:121–124

    Article  CAS  PubMed  Google Scholar 

  2. Dorsay DA, Greene FL, Baysinger CL (1995) Hemodynamic changes during laparoscopic cholecystectomy monitored with transesophageal echocardiography. Surg Endosc 9:128–134

    Article  CAS  PubMed  Google Scholar 

  3. Davides D, Birbas K, Vezakis A, McMahon MJ (1999) Routine low-pressure pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc 13:887–889

    Article  CAS  PubMed  Google Scholar 

  4. Dexter SP, Vucevic M, Gibson J, McMahon MJ (1999) Hemodynamic consequences of high- and low-pressure capnoperitoneum during laparoscopic cholecystectomy. Surg Endosc 13:376–381

    Article  CAS  PubMed  Google Scholar 

  5. Eisenberg MJ, London MJ, Leung JM, Browner WS, Hollenberg M, Tubau JF, Tateo IM, Schiller NB, Mangano DT (1992) Monitoring for myocardial ischemia during noncardiac surgery. A technology assessment of transesophageal echocardiography and 12-lead electrocardiography. The Study of Perioperative Ischemia Research Group. JAMA 268:210–216

    Article  CAS  PubMed  Google Scholar 

  6. Cowan JC, Yusoff K, Moore M, Amos PA, Gold AE, Bourke JP, Tansuphaswadikul S, Campbell RW (1988) Importance of lead selection in QT interval measurement. Am J Cardiol 61:83–87

    Article  CAS  PubMed  Google Scholar 

  7. Elming H, Holm E, Jun L, Torp-Pedersen C, Kober L, Kircshoff M, Malik M, Camm J (1998) The prognostic value of the QT interval and QT interval dispersion in all-cause and cardiac mortality and morbidity in a population of Danish citizens. Eur Heart J 19:1391–1400

    Article  CAS  PubMed  Google Scholar 

  8. Egawa H, Minami J, Fujii K, Hamaguchi S, Okuda Y, Kitajima T (2002) QT interval and QT dispersion increase in the elderly during laparoscopic cholecystectomy: a preliminary study. Can J Anaesth 49:805–809

    Article  PubMed  Google Scholar 

  9. Gebhardt H, Bautz A, Ross M, Loose D, Wulf H, Schaube H (1997) Pathophysiological and clinical aspects of the CO2 pneumoperitoneum. Surg Endosc 11:864–867

    Article  CAS  PubMed  Google Scholar 

  10. Safran D, Sgambati S, Orlando R (1993) Laparoscopy in high-risk cardiac patients. Surg Gynecol Obstet 176:548–554

    CAS  PubMed  Google Scholar 

  11. Hein HA, Joshi GP, Ramsay MA, Fox LG, Gawey BJ, Hellman CL, Arnold JC (1997) Hemodynamic changes during laparoscopic cholecystectomy in patients with severe cardiac disease. J Clin Anesth 9:261–265

    Article  CAS  PubMed  Google Scholar 

  12. Kiely DG, Cargill RI, Lipworth BJ (1996) Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 109:1215–1221

    Article  CAS  PubMed  Google Scholar 

  13. Gutt CN, Oniu T, Mehrabi A, Schemmer P, Kashfi A, Kraus T, Büchler MW (2004) Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg 21:95–105

    Article  CAS  PubMed  Google Scholar 

  14. Day CP, McComb JM, Campbell RW (1990) QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br Heart J 63:342–344

    Article  CAS  PubMed  Google Scholar 

  15. Okin PM, Devereux RB, Howard BV, Fabsitz RR, Lee ET, Welty TK (2000) Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians. The Strong Heart Study. Circulation 101:61–66

    CAS  PubMed  Google Scholar 

  16. Zareba W, Moss AJ, Le Cessie S (1994) Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am J Cardiol 74:550–553

    Article  CAS  PubMed  Google Scholar 

  17. Priori SG, Napolitano C, Diehl L, Schwartz PJ (1994) Dispersion of the QT interval: a marker of therapeutic efficacy on the idiopathic long QT interval. Circulation 89:1681–1689

    CAS  PubMed  Google Scholar 

  18. de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE (1998) QTc dispersion predicts cardiac mortality in the elderly: the Rotterdam Study. Circulation. 97:467–472

    PubMed  Google Scholar 

  19. Lee KW, Okin PM, Kligfield P, Stein KM, Lerman BB (1997) Precordial QT dispersion and inducible ventricular tachycardia. Am Heart J 134:1005–1013

    Article  CAS  PubMed  Google Scholar 

  20. Clarkson PB, Naas AA, McMahon A, MacLeod C, Struthers AD, MacDonald TM (1995) QT dispersion in essential hypertension. QJM 88:327–332

    CAS  PubMed  Google Scholar 

  21. Karpanou EA, Vyssoulis GP, Psichogios A, Malakou C, Kyrozi EA, Cokkinos DV, Toutouzas PK (1998) Regression of left ventricular hypertrophy results in improvement of QT dispersion in patients with hypertension. Am Heart J 136:765–768

    Article  CAS  PubMed  Google Scholar 

  22. Rials SJ, Wu Y, Xu X, Filart RA, Marinchak RA, Kowey PR (1997) Regression of left ventricular hypertrophy with captopril restores normal ventricular action potential duration, dispersion of refractoriness, and vulnerability to inducible ventricular fibrillation. Circulation 96:1330–1336

    CAS  PubMed  Google Scholar 

  23. Higham PD, Furniss SS, Campbell RW (1995) QT dispersion and components of the QT interval in ischaemia and infarction. Br Heart J 73:32–36

    Article  CAS  PubMed  Google Scholar 

  24. Puljevic D, Smalcelj A, Durakovic Z, Goldner V (1998) Effects of postmyocardial infarction scar size, cardiac function, and severity of coronary artery disease on QT interval dispersion as a risk factor for complex ventricular arrhythmia. Pacing Clin Electrophysiol 21:1508–1516

    Article  CAS  PubMed  Google Scholar 

  25. Schneider CA, Voth E, Baer FM, Horst M, Wagner R, Sechtem U (1997) QT dispersion is determined by the extent of viable myocardium in patients with chronic Q-wave myocardial infarction. Circulation 96:3913–3920

    CAS  PubMed  Google Scholar 

  26. Brachmann J, Hilbel T, Grünig E, Benz A, Haass M, Kübler W (1997) Ventricular arrhythmias in dilated cardiomyopathy [review]. Pacing Clin Electrophysiol 20(10 Pt 2):2714–2718

    Article  CAS  PubMed  Google Scholar 

  27. Berger RD, Kasper EK, Baughman KL, Marban E, Calkins H, Tomaselli GF (1997) Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96:1557–1565

    CAS  PubMed  Google Scholar 

  28. Antzelevitch C, Belardinelli L (2006) The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis [review]. J Cardiovasc Electrophysiol 17(Suppl 1):S79–S85

    Article  PubMed  Google Scholar 

  29. Marfella R, Gualdiero P, Siniscalchi M, Carusone C, Verza M, Marzano S, Esposito K, Giugliano D (2003) Morning blood pressure peak, QT intervals, and sympathetic activity in hypertensive patients. Hypertension 41:237–243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Ekici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekici, Y., Bozbas, H., Karakayali, F. et al. Effect of different intra-abdominal pressure levels on QT dispersion in patients undergoing laparoscopic cholecystectomy. Surg Endosc 23, 2543–2549 (2009). https://doi.org/10.1007/s00464-009-0388-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-009-0388-4

Keywords

Navigation