Skip to main content
Log in

Normative High-Resolution Pharyngeal Manometry: Impact of Age, Size of System, and Sex on Primary Metrics and Pressure Stability

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

There have been many reports of normative pharyngeal swallowing pressures using high-resolution pharyngeal manometry, but there is a fair amount of between-subject variance in reported pressure parameters. The purpose of this study was to put forward normative pharyngeal high-resolution manometry measures across the lifespan and investigate the effects of age, size of system, and sex. High-resolution pharyngeal manometry was performed on 98 healthy adults (43 males) between the ages 21 and 89. Pressure duration, maxima, integral, and within-individual variability metrics were averaged over 10 swallows of 10-ml thin liquid. Multiple linear and logistic regressions with model fitting were used to examine how pharyngeal pressures relate to age, pharyngeal size, and sex. Age was associated with tongue base maximum pressure, tongue base maximum variability, and upper esophageal sphincter-integrated relaxation pressure (F3,92 = 6.69; p < 0.001; adjusted R2 = 0.15). Pharyngeal area during bolus hold was associated with velopharynx integral (F1,89 = 5.362; p = 0.02; adjusted R2 = 0.05), and there was no significant model relating pharyngeal pressures to C2–C4 length (p < 0.05). Sex differences were best described by tongue base integral and hypopharynx maximum variability (χ2 = 10.27; p = 0.006; pseudo R2 = 0.14). Normative data reveal the distribution of swallow pressure metrics which need to be accounted for when addressing dysphagia patients, the importance of pressure interactions in normal swallow, and address the relative stability of swallow metrics with normal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H. Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope. 2008;118:1729–32. https://doi.org/10.1097/MLG.0b013e31817dfd02.

    Article  PubMed  Google Scholar 

  2. McCulloch TM, Hoffman MR, Ciucci MR. High-resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol. 2010;119:369–76. https://doi.org/10.1177/000348941011900602.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McConnel FM. Analysis of pressure generation and bolus transit during pharyngeal swallowing. Laryngoscope. 1988;98:71–8. https://doi.org/10.1288/00005537-198801000-00015.

    Article  CAS  PubMed  Google Scholar 

  4. McConnel FM, Cerenko D, Hersh T, Weil LJ. Evaluation of pharyngeal dysphagia with manofluorography. Dysphagia. 1988;2:187–95. https://doi.org/10.1007/BF02414425.

    Article  CAS  PubMed  Google Scholar 

  5. Ravich WJ. The unrealized potential of pharyngeal manometry. Dysphagia. 1995;10:42–3. https://doi.org/10.1007/BF00261279.

    Article  CAS  PubMed  Google Scholar 

  6. Clouse RE, Staiano A. Topography of normal and high-amplitude esophageal peristalsis. Am J Physiol. 1993;265:G1098-1107. https://doi.org/10.1152/ajpgi.1993.265.6.G1098.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Kahrilas PJ. Deglutitive upper esophageal sphincter relaxation: A study of 75 volunteer subjects using solid-state high-resolution manometry. Am J Physiol Gastrointest Liver Physiol. 2006;291:G525-531. https://doi.org/10.1152/ajpgi.00081.2006.

    Article  CAS  PubMed  Google Scholar 

  8. Gyawali CP, Kahrilas PJ. A short history of high-resolution esophageal manometry. Dysphagia. 2021. https://doi.org/10.1007/s00455-021-10372-7.

    Article  PubMed  Google Scholar 

  9. Omari TI, Ciucci M, Gozdzikowska K, Hernández E, Hutcheson K, Jones C, Maclean J, Nativ-Zeltzer N, Plowman E, Rogus-Pulia N, Rommel N, O’Rourke A. High-resolution pharyngeal manometry and impedance: Protocols and metrics-recommendations of a high-resolution pharyngeal manometry international working group. Dysphagia. 2020;35:281–95. https://doi.org/10.1007/s00455-019-10023-y.

    Article  PubMed  Google Scholar 

  10. Knigge MA, Thibeault S, McCulloch TM. Implementation of high-resolution manometry in the clinical practice of speech language pathology. Dysphagia. 2014;29:2–16. https://doi.org/10.1007/s00455-013-9494-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Rourke A, Humphries K. The use of high-resolution pharyngeal manometry as biofeedback in dysphagia therapy. Ear Nose Throat J. 2017;96:56–8. https://doi.org/10.1177/014556131709600205.

    Article  PubMed  Google Scholar 

  12. Jones CA, Rogus-Pulia NM, Forgues AL, Orne J, Macdonald CL, Connor NP, McCulloch TM. SLP-perceived technical and patient-centered factors associated with pharyngeal high-resolution manometry. Dysphagia. 2019;34:170–8. https://doi.org/10.1007/s00455-018-9954-z.

    Article  PubMed  Google Scholar 

  13. Winiker K, Gillman A, Guiu Hernandez E, Huckabee M-L, Gozdzikowska K. A systematic review of current methodology of high resolution pharyngeal manometry with and without impedance. Eur Arch Otorhinolaryngol. 2019;276:631–45. https://doi.org/10.1007/s00405-018-5240-9.

    Article  PubMed  Google Scholar 

  14. Jones CA, Colletti CM. Age-related functional reserve decline is not seen in pharyngeal swallowing pressures. J Speech Lang Hear Res. 2021;64:3734–41. https://doi.org/10.1044/2021_JSLHR-21-00164.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Colevas SM, Stalter LN, Jones CA, McCulloch TM. The natural swallow: Factors affecting subject choice of bolus volume and pharyngeal swallow parameters in a self-selected swallow. Dysphagia. 2022;37:1172–82. https://doi.org/10.1007/s00455-021-10373-6.

    Article  PubMed  Google Scholar 

  16. Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography: A normative study of younger and older adults. Neurogastroenterol Motil. 2016;28:721–31. https://doi.org/10.1111/nmo.12769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cock C, Omari T. Systematic review of pharyngeal and esophageal manometry in healthy or dysphagic older persons (>60 years). Geriatrics (Basel). 2018. https://doi.org/10.3390/geriatrics3040067.

    Article  PubMed  Google Scholar 

  18. McCulloch TM (2015) Normative data and clinical value of pharyngeal high-resolution manometry: A technology and procedure development thesis. The Triological Society

  19. Molfenter SM, Steele CM. Use of an anatomical scalar to control for sex-based size differences in measures of hyoid excursion during swallowing. J Speech Lang Hear Res. 2014;57:768–78. https://doi.org/10.1044/2014_JSLHR-S-13-0152.

    Article  PubMed  Google Scholar 

  20. Kim CK, Ryu JS, Song SH, Koo JH, Lee KD, Park HS, Oh Y, Min K. Effects of head rotation and head tilt on pharyngeal pressure events using high resolution manometry. Ann Rehabil Med. 2015;39:425–31. https://doi.org/10.5535/arm.2015.39.3.425.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ryu JS, Park D, Oh Y, Lee ST, Kang JY. The effects of bolus volume and texture on pharyngeal pressure events using high-resolution manometry and its comparison with videofluoroscopic swallowing study. J Neurogastroenterol Motil. 2016;22:231–9. https://doi.org/10.5056/jnm15095.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park D, Shin CM, Ryu JS. Effect of different viscosities on pharyngeal pressure during swallowing: A study using high-resolution manometry. Arch Phys Med Rehabil. 2017;98:487–94. https://doi.org/10.1016/j.apmr.2016.07.013.

    Article  PubMed  Google Scholar 

  23. Park D, Suh JH, Kim H, Ryu JS. The effect of four-channel neuromuscular electrical stimulation on swallowing kinematics and pressures: A pilot study. Am J Phys Med Rehabil. 2019;98:1051–9. https://doi.org/10.1097/PHM.0000000000001241.

    Article  PubMed  Google Scholar 

  24. Lee SM, Lee BH, Kim JW, Jang JY, Jang EG, Ryu JS. Effects of chin-down maneuver on pharyngeal pressure generation according to dysphagia and viscosity. Ann Rehabil Med. 2020;44:493–501. https://doi.org/10.5535/arm.20016.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosen SP, Jones CA, Hoffman MR, Knigge MA, McCulloch TM. Pressure abnormalities in patients with Zenker’s diverticulum using pharyngeal high-resolution manometry. Laryngoscope Investig Otolaryngol. 2020;5:708–17. https://doi.org/10.1002/lio2.434.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferris L, Doeltgen S, Cock C, Rommel N, Schar M, Carrión S, Scholten I, Omari T. Modulation of pharyngeal swallowing by bolus volume and viscosity. Am J Physiol Gastrointest Liver Physiol. 2021;320:G43–53. https://doi.org/10.1152/ajpgi.00270.2020.

    Article  CAS  PubMed  Google Scholar 

  27. Schar MS, Omari TI, Woods CM, Ferris LF, Doeltgen SH, Lushington K, Kontos A, Athanasiadis T, Cock C, Coetzer C-LC, Eckert DJ, Ooi EH. Altered swallowing biomechanics in people with moderate-severe obstructive sleep apnea. J Clin Sleep Med. 2021;17:1793–803. https://doi.org/10.5664/jcsm.9286.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fattori B, Nacci A, Farneti D, Ceravolo R, Santoro A, Bastiani L, Simoni F, Pagani R, De Bortoli N. Dysphagia in Parkinson’s disease: Pharyngeal manometry and fiberoptic endoscopic evaluation. Auris Nasus Larynx. 2022;49:986–94. https://doi.org/10.1016/j.anl.2022.03.016.

    Article  PubMed  Google Scholar 

  29. Omari T, Rommel N, Jan T, Szczesniak M, Wu P, Schar M, Doeltgen S, Cock C. Transient hypopharyngeal intrabolus pressurization patterns: Clinically relevant or normal variant? Neurogastroenterol Motil. 2022;34: e14276. https://doi.org/10.1111/nmo.14276.

    Article  PubMed  Google Scholar 

  30. Szczesniak MM, Omari TI, Lam TY, Wong M, Mok VCT, Wu JCY, Chiu PWY, Yuen MTY, Tsang RK, Cock C, Sung JJ, Wu P. Evaluation of oropharyngeal deglutitive pressure dynamics in patients with Parkinson’s disease. Am J Physiol Gastrointest Liver Physiol. 2022;322:G421–30. https://doi.org/10.1152/ajpgi.00314.2021.

    Article  CAS  PubMed  Google Scholar 

  31. Kwong SL, Hernandez EG, Winiker K, Gozdzikowska K, Macrae P, Huckabee M-L. Effect of topical nasal anesthetic on comfort and swallowing in high-resolution impedance manometry. Laryngoscope. 2022. https://doi.org/10.1002/lary.30010.

    Article  PubMed  Google Scholar 

  32. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM. Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope. 2010;120:2367–73. https://doi.org/10.1002/lary.21150.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mielens JD, Hoffman MR, Ciucci MR, Jiang JJ, McCulloch TM. Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. Dysphagia. 2011;26:3–12. https://doi.org/10.1007/s00455-010-9320-2.

    Article  PubMed  Google Scholar 

  34. Hoffman MR, Mielens JD, Ciucci MR, Jones CA, Jiang JJ, McCulloch TM. High-resolution manometry of pharyngeal swallow pressure events associated with effortful swallow and the Mendelsohn maneuver. Dysphagia. 2012;27:418–26. https://doi.org/10.1007/s00455-011-9385-6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Geng Z, Hoffman MR, Jones CA, McCulloch TM, Jiang JJ. Three-dimensional analysis of pharyngeal high-resolution manometry data. Laryngoscope. 2013;123:1746–53. https://doi.org/10.1002/lary.23987.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lin T, Xu G, Dou Z, Lan Y, Yu F, Jiang L. Effect of bolus volume on pharyngeal swallowing assessed by high-resolution manometry. Physiol Behav. 2014;128:46–51. https://doi.org/10.1016/j.physbeh.2014.01.030.

    Article  CAS  PubMed  Google Scholar 

  37. Doeltgen SH, Omari TI, Savilampi J. Remifentanil alters sensory neuromodulation of swallowing in healthy volunteers: Quantification by a novel pressure-impedance analysis. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1176-1182. https://doi.org/10.1152/ajpgi.00138.2016.

    Article  CAS  PubMed  Google Scholar 

  38. Lippert D, Hoffman MR, Britt CJ, Jones CA, Hernandez J, Ciucci MR, McCulloch TM. Preliminary evaluation of functional swallow after fotal laryngectomy using high-resolution manometry. Ann Otol Rhinol Laryngol. 2016;125:541–9. https://doi.org/10.1177/0003489416629978.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Balasubramanian G, Sharma T, Kern M, Mei L, Sanvanson P, Shaker R. Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals. Neurogastroenterol Motil. 2017. https://doi.org/10.1111/nmo.13119.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jungheim M, Kallusky J, Ptok M. Einfluss des schluckvolumens auf die pharynxdynamik, evaluiert mit dünnen hochauflösungsmanometriesonden. Laryngo-Rhino-Otol. 2017;96:112–7. https://doi.org/10.1055/s-0042-118231.

    Article  Google Scholar 

  41. Lan Y, Xu G-Q, Yu F, Lin T, Jiang L-S, Liu F. The effect of bolus consistency on swallowing function measured by high-resolution manometry in healthy volunteers. Laryngoscope. 2017;127:173–8. https://doi.org/10.1002/lary.26085.

    Article  PubMed  Google Scholar 

  42. Park D, Lee HH, Lee ST, Oh Y, Lee JC, Nam KW, Ryu JS. Normal contractile algorithm of swallowing related muscles revealed by needle EMG and its comparison to videofluoroscopic swallowing study and high resolution manometry studies: A preliminary study. J Electromyogr Kinesiol. 2017;36:81–9. https://doi.org/10.1016/j.jelekin.2017.07.007.

    Article  PubMed  Google Scholar 

  43. Park C-H, Kim D-K, Lee Y-T, Yi Y, Lee J-S, Kim K, Park JH, Yoon KJ. Quantitative analysis of swallowing function between dysphagia patients and healthy subjects using high-resolution manometry. Ann Rehabil Med. 2017;41:776–85. https://doi.org/10.5535/arm.2017.41.5.776.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jones CA, Hoffman MR, Lin L, Abdelhalim S, Jiang JJ, McCulloch TM. Identification of swallowing disorders in early and mid-stage Parkinson’s disease using pattern recognition of pharyngeal high-resolution manometry data. Neurogastroenterol Motil. 2018;30: e13236. https://doi.org/10.1111/nmo.13236.

    Article  CAS  PubMed  Google Scholar 

  45. Rosen SP, Abdelhalim SM, Jones CA, McCulloch TM. Effect of body position on pharyngeal swallowing pressures using high-resolution manometry. Dysphagia. 2018;33:389–98. https://doi.org/10.1007/s00455-017-9866-3.

    Article  PubMed  Google Scholar 

  46. Kallusky J, Zimmerer R, Tavassol F, Gellrich N-C, Ptok M, Jungheim M. Deglutition in patients with hypernasality associated with unilateral cleft lip and palate evaluated with high-resolution manometry. Cleft Palate Craniofac J. 2020;57:238–44. https://doi.org/10.1177/1055665619877053.

    Article  PubMed  Google Scholar 

  47. Nagashima Y, Kagaya H, Toda F, Aoyagi Y, Shibata S, Saitoh E, Abe K, Nakayama E, Ueda K. Effect of electromyography-triggered peripheral magnetic stimulation on voluntary swallow in healthy humans. J Oral Rehabil. 2021;48:1354–62. https://doi.org/10.1111/joor.13256.

    Article  PubMed  Google Scholar 

  48. Suntrup-Krueger S, Muhle P, Kampe I, Egidi P, Ruck T, Lenze F, Jungheim M, Gminski R, Labeit B, Claus I, Warnecke T, Gross J, Dziewas R. Effect of capsaicinoids on neurophysiological, biochemical, and mechanical parameters of swallowing function. Neurotherapeutics. 2021;18:1360–70. https://doi.org/10.1007/s13311-020-00996-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hung J-S, Liang S-W, Omari T, Wong M-W, Lei W-Y, Yi C-H, Liu T-T, Lin L, Chen C-L. Effects of the GABA(B) agonist baclofen on volitional swallowing in normal subjects. Kaohsiung J Med Sci. 2022. https://doi.org/10.1002/kjm2.12607.

    Article  PubMed  Google Scholar 

  50. Han X-X, Qiao J, Meng Z-A, Pan D-M, Zhang K, Wei X-M, Dou Z-L. The biomechanical characteristics of swallowing in tracheostomized patients with aspiration following acquired brain injury: A cross-sectional study. Brain Sci. 2023. https://doi.org/10.3390/brainsci13010091.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marques CHD, Lemme EMO, Abrahão-Júnior LJ. Swallow impairment in Parkinson’s disease: Revelations from high-resolution videomanometry. Dysphagia. 2023. https://doi.org/10.1007/s00455-023-10566-1.

    Article  PubMed  Google Scholar 

  52. Szczesniak MM, Maclean J, Zhang T, Liu R, Cook IJ. The normative range for and age and gender effects on the Sydney Swallow Questionnaire (SSQ). Dysphagia. 2014;29:535–8. https://doi.org/10.1007/s00455-014-9541-x.

    Article  PubMed  Google Scholar 

  53. Jones CA, Meisner EL, Broadfoot CK, Rosen SP, Samuelsen CR, McCulloch TM. Methods for measuring swallowing pressure variability using high-resolution manometry. Front Appl Math Stat. 2018;4:23. https://doi.org/10.3389/fams.2018.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jones CA, Hoffman MR, Geng Z, Abdelhalim SM, Jiang JJ, McCulloch TM. Reliability of an automated high-resolution manometry analysis program across expert users, novice users, and speech-language pathologists. J Speech Lang Hear Res. 2014;57:831–6. https://doi.org/10.1044/2014_JSLHR-S-13-0101.

    Article  PubMed  Google Scholar 

  55. Leonard RJ, Belafsky PC, Rees CJ. Relationship between fluoroscopic and manometric measures of pharyngeal constriction: the pharyngeal constriction ratio. Ann Otol Rhinol Laryngol. 2006;115:897–901. https://doi.org/10.1177/000348940611501207.

    Article  PubMed  Google Scholar 

  56. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8. https://doi.org/10.1007/BF00417897.

    Article  CAS  PubMed  Google Scholar 

  57. Steele CM, Grace-Martin K. Reflections on clinical and statistical use of the Penetration-Aspiration Scale. Dysphagia. 2017;32:601–16. https://doi.org/10.1007/s00455-017-9809-z.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dodds WJ, Taylor AJ, Stewart ET, Kern MK, Logemann JA, Cook IJ. Tipper and dipper types of oral swallows. AJR Am J Roentgenol. 1989;153:1197–9. https://doi.org/10.2214/ajr.153.6.1197.

    Article  CAS  PubMed  Google Scholar 

  59. Cook IJ, Dodds WJ, Dantas RO, Kern MK, Massey BT, Shaker R, Hogan WJ. Timing of videofluoroscopic, manometric events, and bolus transit during the oral and pharyngeal phases of swallowing. Dysphagia. 1989;4:8–15. https://doi.org/10.1007/BF02407397.

    Article  CAS  PubMed  Google Scholar 

  60. Jones CA, Ciucci MR, Abdelhalim SM, McCulloch TM. Swallowing pressure variability as a function of pharyngeal region, bolus volume, age, and sex. Laryngoscope. 2021;131:E52–8. https://doi.org/10.1002/lary.28667.

    Article  PubMed  Google Scholar 

  61. Kawamura O, Easterling C, Aslam M, Rittmann T, Hofmann C, Shaker R. Laryngo-upper esophageal sphincter contractile reflex in humans deteriorates with age. Gastroenterology. 2004;127:57–64. https://doi.org/10.1053/j.gastro.2004.03.065.

    Article  PubMed  Google Scholar 

  62. Gör AP, Alkan Z, Yigit O, Dursun N, Engin A, Akin SM, Sam B. Assessment of cricopharyngeal muscle aging with apoptotic markers. J Craniofac Surg. 2014;25:e426-430. https://doi.org/10.1097/SCS.0000000000000940.

    Article  PubMed  Google Scholar 

  63. Leaper M, Zhang M, Dawes PJD. An anatomical protrusion exists on the posterior hypopharyngeal wall in some elderly cadavers. Dysphagia. 2005;20:8–14. https://doi.org/10.1007/s00455-004-0018-1.

    Article  PubMed  Google Scholar 

  64. Teplansky KJ, Jones CA. Pharyngeal pressure variability during volitional swallowing maneuvers. J Speech Lang Hear Res. 2022;65:136–45. https://doi.org/10.1044/2021_JSLHR-21-00359.

    Article  PubMed  Google Scholar 

  65. Molfenter SM, Lenell C, Lazarus CL. Volumetric changes to the pharynx in healthy aging: Consequence for pharyngeal swallow mechanics and function. Dysphagia. 2019;34:129–37. https://doi.org/10.1007/s00455-018-9924-5.

    Article  PubMed  Google Scholar 

  66. Molfenter SM, Amin MR, Branski RC, Brumm JD, Hagiwara M, Roof SA, Lazarus CL. Age-related changes in pharyngeal lumen size: A retrospective MRI analysis. Dysphagia. 2015;30:321–7. https://doi.org/10.1007/s00455-015-9602-9.

    Article  PubMed  Google Scholar 

  67. Inamoto Y, González-Fernández M, Saitoh E. 3D-CT evaluation of swallowing: Metrics of the swallowing response using swallowing CT. Dysphagia. 2021. https://doi.org/10.1007/s00455-021-10288-2.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matsubara K, Kumai Y, Samejima Y, Yumoto E. Swallowing pressure and pressure profiles in young healthy adults. Laryngoscope. 2014;124:711–7. https://doi.org/10.1002/lary.24311.

    Article  PubMed  Google Scholar 

  69. Kano M, Shimizu Y, Okayama K, Igari T, Kikuchi M. A morphometric study of age-related changes in adult human epiglottis using quantitative digital analysis of cartilage calcification. Cells Tissues Organs. 2005;180:126–37. https://doi.org/10.1159/000086753.

    Article  PubMed  Google Scholar 

  70. Prithishkumar IJ, David SS. Morphometric analysis and clinical application of the working dimensions of cricothyroid membrane in south Indian adults: With special relevance to surgical cricothyroidotomy. Emerg Med Australas. 2010;22:13–20. https://doi.org/10.1111/j.1742-6723.2009.01245.x.

    Article  PubMed  Google Scholar 

  71. Rosen SP, Jones CA, McCulloch TM. Pharyngeal swallowing pressures in the base-of-tongue and hypopharynx regions identified with three-dimensional manometry. Laryngoscope. 2017;127:1989–95. https://doi.org/10.1002/lary.26483.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jones CA, Ciucci MR. Multimodal swallowing evaluation with high-resolution manometry reveals subtle swallowing changes in early and mid-stage Parkinson disease. J Parkinsons Dis. 2016;6:197–208. https://doi.org/10.3233/JPD-150687.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ferris L, Schar M, McCall L, Doeltgen S, Scholten I, Rommel N, Cock C, Omari T. Characterization of swallow modulation in response to bolus volume in healthy subjects accounting for catheter diameter. Laryngoscope. 2018;128:1328–34. https://doi.org/10.1002/lary.26820.

    Article  PubMed  Google Scholar 

  74. Meyer JP, Jones CA, Walczak CC, McCulloch TM. Three-dimensional manometry of the upper esophageal sphincter in swallowing and nonswallowing tasks. Laryngoscope. 2016;126:2539–45. https://doi.org/10.1002/lary.25957.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guiu Hernandez E, Gozdzikowska K, Jones R, Huckabee M-L. Comparison of unidirectional and circumferential manometric measures within the pharyngoesophageal segment: an exploratory study. Eur Arch Otorhinolaryngol. 2018;275:2303–10. https://doi.org/10.1007/s00405-018-5019-z.

    Article  PubMed  Google Scholar 

  76. Daniels SK, Schroeder MF, DeGeorge PC, Corey DM, Rosenbek JC. Effects of verbal cue on bolus flow during swallowing. Am J Speech Lang Pathol. 2007;16:140–7. https://doi.org/10.1044/1058-0360(2007/018).

    Article  PubMed  Google Scholar 

  77. Nagy A, Leigh C, Hori SF, Molfenter SM, Shariff T, Steele CM. Timing differences between cued and noncued swallows in healthy young adults. Dysphagia. 2013;28:428–34. https://doi.org/10.1007/s00455-013-9456-y.

    Article  PubMed  Google Scholar 

  78. Cock C, Besanko L, Kritas S, Burgstad CM, Thompson A, Heddle R, Fraser RJL, Omari TI. Maximum upper esophageal sphincter (UES) admittance: A non-specific marker of UES dysfunction. Neurogastroenterol Motil. 2016;28:225–33. https://doi.org/10.1111/nmo.12714.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants DC011130 and GM007507. The authors would like to thank the following for assistance with data collection and pre-processing: Chelsea Walczak, Alyssa Mitchell, Sarah Rosen, Nicole Shaen-Hilcock, Ellen Meisner, Emma Backlund, and Sarah Ladin.

Funding

This article was funded by the National Institute on Deafness and Other Communication Disorders, DC011130, Timothy M McCulloch, National Institute of General Medical Sciences, GM007507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. McCulloch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2287 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C.A., Lagus, J.F., Abdelhalim, S.M. et al. Normative High-Resolution Pharyngeal Manometry: Impact of Age, Size of System, and Sex on Primary Metrics and Pressure Stability. Dysphagia (2024). https://doi.org/10.1007/s00455-023-10647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00455-023-10647-1

Keywords

Navigation