Skip to main content

Advertisement

Log in

The Effectiveness of Transcranial Stimulation in Improving Swallowing Outcomes in Adults with Poststroke Dysphagia: A Systematic Review and Meta-analysis

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Transcranial stimulation has been proposed as an alternative rehabilitation therapy for adults with post-stroke dysphagia (PSD). This systematic review sought to determine the effectiveness of transcranial stimulation in patients with post-stroke dysphagia to improve swallowing function. From inception to January 3, 2021, an extensive search was conducted in PubMed, EMBASE, Cochrane, CINAHL, and Scopus, Web of Science. The randomized controlled trials (RCTs) included studies in adults aged 18 years and older who suffered from post-stroke dysphagia. Using Hedges' g as effect size, meta-analyses were conducted using random-effects models. To investigate potential sources of heterogeneity, subgroup analyses, and multivariable meta-regression analyses were conducted. Sixteen RCTs were included in this review, and 13 RCTs were used for meta-analysis. The meta-analysis showed that a large effect size in improving swallowing function after repetitive Transcranial Magnetic Stimulation (g = − 0.86, 95% CI – 1.57, − 0.16) and medium effect size in Transcranial Direct Current Stimulation (g = − 0.61, 95% CI − 1.04, − 0.17) at post-intervention, respectively. Subgroup and meta-regression analysis indicated that stimulation of the esophagus cortical area and middle-aged adults had a greater effect on swallowing function. The overall certainty of evidence assessed using the GRADE approach was low. Despite the positive results, transcranial stimulation requires additional research to reach definitive conclusions about the optimal stimulation protocol and to achieve the greatest benefit. Future trials should be more rigorous and include a larger sample size to demonstrate the efficacy of transcranial stimulation. Transcranial stimulation enables a more efficacious approach to dysphagia mitigation in PSD rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94:634–634.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chilukuri P, Odufalu F, Hachem C. Dysphagia. Mo Med. 2018;115(3):206–10.

    PubMed  PubMed Central  Google Scholar 

  3. Banasik JL, Copstead L-EC. Pathophysiology. 6th ed. Saunders: Elsevier; 2018.

    Google Scholar 

  4. Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke. Stroke. 2005;36(12):2756–63.

    Article  PubMed  Google Scholar 

  5. Armstrong JR, Mosher BD. Aspiration pneumonia after stroke: intervention and prevention. Neurohospitalist. 2011;1(2):85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bouziana SD, Tziomalos K. Malnutrition in patients with acute stroke. J Nutr Metab. 2011;2011:167898.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cohen DL, Roffe C, Beavan J, et al. Post-stroke dysphagia: a review and design considerations for future trials. Int J Stroke. 2016;11(4):399–411.

    Article  PubMed  Google Scholar 

  8. Easterling C. 25 Years of dysphagia rehabilitation: what have we done, what are we doing, and where are we going? Dysphagia. 2017;32(1):50–4.

    Article  PubMed  Google Scholar 

  9. Bath PM, Lee HS, Everton LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD000323.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. González-Fernández M, Ottenstein L, Atanelov L, Christian AB. Dysphagia after stroke: an overview. Curr Phys Med Rehabil Rep. 2013;1(3):187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albizu A, Indahlastari A, Woods AJ. Non-invasive brain stimulation. In: Gu D, Dupre ME, editors. Encyclopedia of gerontology and population aging. Cham: Springer International Publishing; 2019. p. 1–8.

    Google Scholar 

  12. Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast. 2011;2011:871296.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry. 2014;15(4):261–75.

    Article  PubMed  Google Scholar 

  14. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  15. Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  16. Chail A, Saini R, Bhat P, Srivastava K, Chauhan V. Transcranial magnetic stimulation: a review of its evolution and current applications. Ind Psychiatry J. 2018;27(2):172–80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lefaucheur J-P. Chapter 37—Transcranial magnetic stimulation. In: Levin KH, Chauvel P, editors. Handbook of clinical neurology, vol. 160. Elsevier; 2019. p. 559–80.

    Google Scholar 

  18. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: a review. Clin Neurophysiol Pract. 2017;2:19–25.

    Article  PubMed  Google Scholar 

  20. Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res. 2008;51(1):S276–300.

    Article  PubMed  Google Scholar 

  21. Wang H-Y, Crupi D, Liu J, et al. Repetitive transcranial magnetic stimulation enhances BDNF–TrkB signaling in both brain and lymphocyte. J Neurosci. 2011;31(30):11044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D-Y, Park H-S, Park S-W, Kim J-H. The impact of dysphagia on quality of life in stroke patients. Medicine. 2020. https://doi.org/10.1097/MD.0000000000021795.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ekberg O, Hamdy S, Woisard V, Wuttge-Hannig A, Ortega P. Social and psychological burden of dysphagia: its impact on diagnosis and treatment. Dysphagia. 2002;17(2):139–46.

    Article  PubMed  Google Scholar 

  24. Cheng I, Sasegbon A, Hamdy S. Effects of neurostimulation on poststroke dysphagia: a synthesis of current evidence from randomized controlled trials. Neuromodulation. 2020. https://doi.org/10.1111/ner.13327.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pisegna JM, Kaneoka A, Pearson WG Jr, Kumar S, Langmore SE. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. Clin Neurophysiol. 2016;127(1):956–68.

    Article  PubMed  Google Scholar 

  26. Marchina S, Pisegna JM, Massaro JM, et al. Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2021;268(1):293–304.

    Article  PubMed  Google Scholar 

  27. Yang SN, Pyun SB, Kim HJ, Ahn HS, Rhyu BJ. Effectiveness of non-invasive brain stimulation in dysphagia subsequent to stroke: a systemic review and meta-analysis. Dysphagia. 2015;30(4):383–91.

    Article  PubMed  Google Scholar 

  28. Chiang CF, Lin MT, Hsiao MY, Yeh YC, Liang YC, Wang TG. Comparative efficacy of noninvasive neurostimulation therapies for acute and subacute poststroke dysphagia: a systematic review and network meta-analysis. Arch Phys Med Rehabil. 2019;100(4):739-750.e734.

    Article  PubMed  Google Scholar 

  29. Liao X, Xing G, Guo Z, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis. Clin Rehabil. 2017;31(3):289–98.

    Article  PubMed  Google Scholar 

  30. Bath PM, Lee HS, Everton LF. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev. 2018;10(10):Cd000323.

    PubMed  Google Scholar 

  31. Dionísio A, Duarte IC, Patrício M, Castelo-Branco M. Transcranial magnetic stimulation as an intervention tool to recover from language, swallowing and attentional deficits after stroke: a systematic review. Cerebrovasc Dis. 2018;46(3–4):176–83.

    Article  Google Scholar 

  32. Sebastianelli L, Versace V, Martignago S, et al. Low-frequency rTMS of the unaffected hemisphere in stroke patients: a systematic review. Acta Neurol Scand. 2017;136(6):585–605.

    Article  CAS  PubMed  Google Scholar 

  33. Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurol. 2019;18(5):417–8.

    Article  PubMed  Google Scholar 

  34. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  35. The EndNote Team. EndNote. EndNote. X9 ed. Philadelphia, PA: Clarivate; 2013.

  36. Li T, Higgins JPT, Deeks JJ. Chapter 5: Collecting data. Cochrane. Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019) Web site. https://training.cochrane.org/handbook/current/chapter-05. Published 2019. Accessed 3 Jan 2021.

  37. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res. 2005;5(1):13.

    Article  Google Scholar 

  38. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res. 2014;14(1):135.

    Article  Google Scholar 

  39. Higgins JPT, Altman DG, Gøtzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. New York: Wiley; 2013.

    Google Scholar 

  41. Stata: Release 16. [computer program]. College Station, TX: StataCorp LLC2019.

  42. Rosenthal R, Cooper H, Hedges L. Parametric measures of effect size. The Handbook of Research Synthesis. 1994;621(2):231–44.

    Google Scholar 

  43. Hedges LV, Olkin I. Statistical methods for meta-analysis. Cambridge: Academic Press; 2014.

    Google Scholar 

  44. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29(12):1282–97.

    Article  PubMed  Google Scholar 

  45. Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions version 6.0 (updated July 2019). The Cochrane Collaboration. www.handbook.cochrane.org. Published 2019. Accessed 3 Jan 2021.

  46. Richardson M, Garner P, Donegan S. Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin Epidemiology Glob Health. 2019;7(2):192–8.

    Article  Google Scholar 

  47. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. In: The Cochrane Collaboration2011: http://training.cochrane.org/handbook. Accessed 3 Jan 2021.

  48. Borenstein M, Higgins J. Meta-analysis and subgroups. Prev Sci. 2013;14(2):134–43.

    Article  PubMed  Google Scholar 

  49. Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls in statistical analysis: logistic regression. Perspect Clin Res. 2017;8(3):148–51.

    PubMed  PubMed Central  Google Scholar 

  50. GRADEpro Guideline Development Tool [computer program]. McMaster University and Evidence Prime Inc; 2020.

  51. Schünemann H, Higgins J, Vist G, et al. Chapter 14: Completing ‘Summary of Findings’ tables and grading the certainty of the evidence. https://training.cochrane.org/handbook/current/chapter-14#_Ref419904527. Published 2020. Accessed 3 Jan 2021.

  52. Shi L, Lin L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine. 2019. https://doi.org/10.1097/MD.0000000000015987.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Terrin N, Schmid CH, Lau J, Olkin I. Adjusting for publication bias in the presence of heterogeneity. Stat Med. 2003;22(13):2113–26.

    Article  PubMed  Google Scholar 

  55. Pustejovsky JE, Rodgers MA. Testing for funnel plot asymmetry of standardized mean differences. Res Synth Methods. 2019;10(1):57–71.

    Article  PubMed  Google Scholar 

  56. Schwarzer G, Carpenter J, Rücker G. Empirical evaluation suggests Copas selection model preferable to trim-and-fill method for selection bias in meta-analysis. J Clin Epidemiol. 2010;63(3):282–8.

    Article  PubMed  Google Scholar 

  57. Copas J. What works?: Selectivity models and meta-analysis. J R Stat Soc Ser A Stat Soc. 1999;162(1):95–109.

    Article  Google Scholar 

  58. Ahn YH, Sohn HJ, Park JS, et al. Effect of bihemispheric anodal transcranial direct current stimulation for dysphagia in chronic stroke patients: a randomized clinical trial. J Rehabil Med. 2017;49(1):30–5.

    Article  PubMed  Google Scholar 

  59. Cheng IKY, Chan KMK, Wong CS, et al. Neuronavigated high-frequency repetitive transcranial magnetic stimulation for chronic post-stroke dysphagia: a randomized controlled study. J Rehabil Med. 2017;49(6):475–81.

    Article  PubMed  Google Scholar 

  60. Du J, Yang F, Liu L, et al. Repetitive transcranial magnetic stimulation for rehabilitation of poststroke dysphagia: a randomized, double-blind clinical trial. Clin Neurophysiol. 2016;127(3):1907–13.

    Article  PubMed  Google Scholar 

  61. Khedr EM, Abo-Elfetoh N. Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. J Neurol Neurosurg Psychiatry. 2010;81(5):495–9.

    Article  PubMed  Google Scholar 

  62. Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand. 2009;119(3):155–61.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar S, Wagner CW, Frayne C, et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke. 2011;42(4):1035–40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lim KB, Lee HJ, Yoo J, Kwon YG. Effect of low-frequency rTMS and NMES on subacute unilateral hemispheric stroke with dysphagia. Ann Rehabil Med. 2014;38(5):592–602.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Park E, Kim MS, Chang WH, et al. Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia. Brain Stimul. 2016;10(1):75–82.

    Article  PubMed  Google Scholar 

  66. Park JW, Oh JC, Lee JW, Yeo JS, Ryu KH. The effect of 5Hz high-frequency rTMS over contralesional pharyngeal motor cortex in post-stroke oropharyngeal dysphagia: a randomized controlled study. Neurogastroenterol Motil. 2013;25(4):324-330+e250.

    Article  PubMed  Google Scholar 

  67. Pingue V, Priori A, Malovini A, Pistarini C. Dual transcranial direct current stimulation for poststroke dysphagia: a randomized controlled trial. Neurorehabil Neural Repair. 2018;32(6–7):635–44.

    Article  PubMed  Google Scholar 

  68. Sawan SAE, Reda AM, Kamel AH, Ali MAM. Transcranial direct current stimulation (tDCS): its effect on improving dysphagia in stroke patients. Egypt J Neurol Psychiatr Neurosurg. 2020. https://doi.org/10.1186/s41983-020-00246-4.

    Article  Google Scholar 

  69. Shigematsu T, Fujishima I, Ohno K. Transcranial direct current stimulation improves swallowing function in stroke patients. Neurorehabil Neural Repair. 2012;27(4):363–9.

    Article  Google Scholar 

  70. Suntrup-Krueger S, Ringmaier C, Muhle P, et al. Randomized trial of transcranial direct current stimulation for poststroke dysphagia. Ann Neurol. 2018;83(2):328–40.

    Article  PubMed  Google Scholar 

  71. Tarameshlu M, Ansari NN, Ghelichi L, Jalaei S. The effect of repetitive transcranial magnetic stimulation combined with traditional dysphagia therapy on poststroke dysphagia: a pilot double-blinded randomized-controlled trial. Int J Rehabil Res. 2018;42(2):133–8.

    Article  Google Scholar 

  72. Ünlüer N, Temuçin Ç, Demir N, Serel Arslan S, Karaduman AA. Effects of low-frequency repetitive transcranial magnetic stimulation on swallowing function and quality of life of post-stroke patients. Dysphagia. 2019;34(3):360–71.

    Article  PubMed  Google Scholar 

  73. Yang EJ, Baek SR, Shin J, et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci. 2012;30(4):303–11.

    CAS  PubMed  Google Scholar 

  74. Fewtrell MS, Kennedy K, Singhal A, et al. How much loss to follow-up is acceptable in long-term randomised trials and prospective studies? Arch Dis Child. 2008;93(6):458–61.

    Article  PubMed  Google Scholar 

  75. Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group Web site. https://www.guidelinedevelopment.org. Published 2013. Accessed 3 Jan 2021.

  76. Sandrini M, Cohen LG. Chapter 40—Noninvasive brain stimulation in neurorehabilitation. In: Lozano AM, Hallett M, editors. Handbook of clinical neurology, vol. 116. Amsterdam: Elsevier; 2013. p. 499–524.

    Google Scholar 

  77. Turner RM, Bird SM, Higgins JPT. The impact of study size on meta-analyses: examination of underpowered studies in cochrane reviews. PLoS ONE. 2013;8(3):e59202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aziz Q, Rothwell JC, Hamdy S, Barlow J, Thompson DG. The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology. 1996;111(4):855–62.

    Article  CAS  PubMed  Google Scholar 

  79. Shaheen H, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12.

    Article  Google Scholar 

  80. Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12.

    Article  CAS  PubMed  Google Scholar 

  81. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9(1):527–65.

    Article  CAS  PubMed  Google Scholar 

  82. Madhavan A. Preclinical dysphagia in community dwelling older adults: what should we look for? Am J Speech Lang Pathol. 2021;30(2):833–43.

    Article  PubMed  Google Scholar 

  83. Wirth R, Dziewas R, Beck AM, et al. Oropharyngeal dysphagia in older persons—from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clin Interv Aging. 2016;11:189–208.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Viera AJ, Bangdiwala SI. Eliminating bias in randomized controlled trials: importance of allocation concealment and masking. Fam Med. 2007;39(2):132–7.

    PubMed  Google Scholar 

  85. Burkhead LM, Sapienza CM, Rosenbek JC. Strength-training exercise in dysphagia rehabilitation: principles, procedures, and directions for future research. Dysphagia. 2007;22(3):251–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all the study author in this review for contributing their knowledge.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not- for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SWT, YL, and STL conceived and guided the study; SWT and AW carried out the literature searches; SWT and AW extracted the data; SWT and AW assessed the study quality; SWT and LJC performed the statistical analysis; SWT, YL, LJC, and STL wrote the manuscript; LJC formatted the manuscript and ensure proper data management; SWT, AW, LJC, SHW, YL, and STL revised the manuscript.

Corresponding author

Correspondence to Siew Tiang Lau.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S.W., Wu, A., Cheng, L.J. et al. The Effectiveness of Transcranial Stimulation in Improving Swallowing Outcomes in Adults with Poststroke Dysphagia: A Systematic Review and Meta-analysis. Dysphagia 37, 1796–1813 (2022). https://doi.org/10.1007/s00455-022-10424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10424-6

Keywords

Navigation