Skip to main content
Log in

An Upper Bound on Pachner Moves Relating Geometric Triangulations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that any two geometric triangulations of a closed hyperbolic, spherical, or Euclidean manifold are related by a sequence of Pachner moves and barycentric subdivisions of bounded length. This bound is in terms of the dimension of the manifold, the number of top dimensional simplexes, and bound on the lengths of edges of the triangulation. This leads to an algorithm to check from the combinatorics of the triangulation and bounds on lengths of edges, if two geometrically triangulated closed hyperbolic or low dimensional spherical manifolds are isometric or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adiprasito, K.A., Benedetti, B.: Subdivisions, shellability, and collapsibility of products. Combinatorica 37(1), 1–30 (2017)

    Article  MathSciNet  Google Scholar 

  2. Björner, A.: Shellable and Cohen–Macaulay partially ordered sets. Trans. Am. Math. Soc. 260(1), 159–183 (1980)

    Article  MathSciNet  Google Scholar 

  3. Bruggesser, H., Mani, P.: Shellable decompositions of cells and spheres. Math. Scand. 29, 197–205 (1971)

    Article  MathSciNet  Google Scholar 

  4. Dibble, J.: The convexity radius of a Riemannian manifold. Asian J. Math. 21(1), 169–174 (2017)

    Article  MathSciNet  Google Scholar 

  5. Gabai, D., Meyerhoff, R., Milley, P.: Minimum volume cusped hyperbolic three-manifolds. J. Am. Math. Soc. 22(4), 1157–1215 (2009)

    Article  MathSciNet  Google Scholar 

  6. Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. École Norm. Sup. 11(4), 451–470 (1978)

    Article  MathSciNet  Google Scholar 

  7. Hodgson, C.D., Rubinstein, J.H., Segerman, H., Tillmann, S.: Triangulations of \(3\)-manifolds with essential edges. Ann. Fac. Sci. Toulouse Math. 24(5), 1103–1145 (2015)

    Article  MathSciNet  Google Scholar 

  8. Kalelkar, T., Phanse, A.: Geometric bistellar moves relate geometric triangulations. Topol. Appl. 285, # 107390 (2020)

    Article  MathSciNet  Google Scholar 

  9. Kellerhals, R.: On the structure of hyperbolic manifolds. Israel J. Math. 143, 361–379 (2004)

    Article  MathSciNet  Google Scholar 

  10. Klingenberg, W.: Contributions to Riemannian geometry in the large. Ann. Math. 69, 654–666 (1959)

    Article  MathSciNet  Google Scholar 

  11. Kuperberg, G.: Algorithmic homeomorphism of \(3\)-manifolds as a corollary of geometrization. Pac. J. Math. 301(1), 189–241 (2019)

    Article  MathSciNet  Google Scholar 

  12. Lickorish, W.B.R.: Unshellable triangulations of spheres. Eur. J. Combin. 12(6), 527–530 (1991)

    Article  MathSciNet  Google Scholar 

  13. Lickorish, W.B.R.: Simplicial moves on complexes and manifolds. In: Kirbyfest (Berkeley 1998). Geom. Topol. Monogr., vol. 2, pp. 299–320. Geometry & Topology Publications, Coventry (1999)

  14. Markov, A.: The insolubility of the problem of homeomorphy. Dokl. Akad. Nauk SSSR 121, 218–220 (1958). (in Russian)

    MathSciNet  MATH  Google Scholar 

  15. Mijatović, A.: Simplifying triangulations of \(S^3\). Pac. J. Math. 208(2), 291–324 (2003)

    Article  Google Scholar 

  16. Mijatović, A.: Triangulations of Seifert fibred manifolds. Math. Ann. 330(2), 235–273 (2004)

    Article  MathSciNet  Google Scholar 

  17. Mijatović, A.: Simplical structures of knot complements. Math. Res. Lett. 12(5–6), 843–856 (2005)

    Article  MathSciNet  Google Scholar 

  18. Mijatović, A.: Triangulations of fibre-free Haken \(3\)-manifolds. Pac. J. Math. 219(1), 139–186 (2005)

    Article  MathSciNet  Google Scholar 

  19. Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. Annals of Mathematics Studies, vol. 78. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  20. Newman, M.H.A.: A property of \(2\)-dimensional elements. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam 29, 1401–1405 (1926)

    MATH  Google Scholar 

  21. Pachner, U.: P.L. homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Combin. 12(2), 129–145 (1991)

    Article  MathSciNet  Google Scholar 

  22. Prasad, G.: Strong rigidity of \({ \mathbf{Q}}\)-rank lattices. Invent. Math. 21, 255–286 (1973)

    Article  MathSciNet  Google Scholar 

  23. de Rham, G.: Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier 2, 51–67 (1950)

    Article  MathSciNet  Google Scholar 

  24. Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 69. Springer, New York (1972)

    Book  Google Scholar 

  25. Rudin, M.E.: An unshellable triangulation of a tetrahedron. Bull. Am. Math. Soc. 64, 90–91 (1958)

    Article  MathSciNet  Google Scholar 

  26. Scott, P., Short, H.: The homeomorphism problem for closed \(3\)-manifolds. Algebr. Geom. Topol. 14(4), 2431–2444 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zeeman, E.C.: Seminar on Combinatorial Topology. Institut Des Hautes Etudes Scientifiques (1963)

  28. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgements

Tejas Kalelkar was supported by the MATRICS grant of the Science and Engineering Research Board, GoI and Advait Phanse was supported by an award from the National Board of Higher Mathematics, GoI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas Kalelkar.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalelkar, T., Phanse, A. An Upper Bound on Pachner Moves Relating Geometric Triangulations. Discrete Comput Geom 66, 809–830 (2021). https://doi.org/10.1007/s00454-021-00283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00283-7

Keywords

Mathematics Subject Classification

Navigation