Skip to main content
Log in

On Exact Quantum Query Complexity

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present several families of total boolean functions which have exact quantum query complexity which is a constant multiple (between 1/2 and 2/3) of their classical query complexity, and show that optimal quantum algorithms for these functions cannot be obtained by simply computing parities of pairs of bits. We also characterise the model of nonadaptive exact quantum query complexity in terms of coding theory and completely characterise the query complexity of symmetric boolean functions in this context. These results were originally inspired by numerically solving the semidefinite programs characterising quantum query complexity for small problem sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We would like to thank Scott Aaronson for stressing this point to us.

  2. In some sense, all quantum query algorithms are nonadaptive, as the choice of unitaries applied in the algorithm does not depend on the input. However, the weight placed on queries to different input bits throughout the algorithm does in general depend on the input.

References

  1. Aaronson, S.: Quantum lower bound for Recursive Fourier Sampling. Quantum Information and Computation 3(2), 165–174 (2003). arXiv:quant-ph/0209060

    MATH  MathSciNet  Google Scholar 

  2. Ambainis, A.: Superlinear advantage for exact quantum algorithms (2012). arXiv:1211.0721

  3. Ambainis, A., Iraids, J., Smotrovs, J.: Exact quantum query complexity of EXACT and THRESHOLD (2013). arXiv:1302.1235

  4. Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semi-definite programming. In: Proceedings of 18th Annual IEEE Conference on Computational Complexity, pp. 179–193 (2003)

    Google Scholar 

  5. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48(4), 778–797 (2001). arXiv:quant-ph/9802049

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Computing 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon’s problem. In: Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems, pp. 12–23 (1997). arXiv:quant-ph/9704027

    Chapter  Google Scholar 

  8. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theoretical Computer Science 288, 21–43 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proceedings of the Royal Society, Series A 454(1969), 339–354 (1998). arXiv:quant-ph/9708016

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, G., Karpovsky, M., Mattson, H. Jr., Schatz, J.: Covering radius—survey and recent results. IEEE Transactions on Information Theory 31(3), 328–343 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. van Dam, W.: Quantum oracle interrogation: Getting all information for almost half the price. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science, pp. 362–367. IEEE Press, New York (1998). arXiv:quant-ph/9805006

    Google Scholar 

  12. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society, Series A 439(1907), 553–558 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dubrovska, A., Mischenko-Slatenkova, T.: Computing boolean functions: Exact quantum query algorithms and low degree polynomials (2006). arXiv:quant-ph/0607022

  14. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum computation in determining parity. Physical Review Letters 81, 5442–5444 (1998). arXiv:quant-ph/9802045

    Article  Google Scholar 

  15. Grant, M., Boyd, S.: CVH: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx, April 2011

  16. Hayes, T., Kutin, S., van Melkebeek, D.: The quantum black-box complexity of majority. Algorithmica 34(4), 480–501 (2002). arXiv:quant-ph/0109101

    Article  MATH  MathSciNet  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  18. Høyer, P., Špalek, R.: Lower bounds on quantum query complexity. Bulletin of the European Association for Theoretical Computer Science 87, 78–103 (2005). arXiv:quant-ph/0509153

    Google Scholar 

  19. Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proc. 39th Annual ACM Symp. Theory of Computing, pp. 526–535 (2007). arXiv:quant-ph/0611054. Numerical results and source code at http://www.ucw.cz/~robert/papers/adv/

    Google Scholar 

  20. Midrijānis, G.: Exact quantum query complexity for total Boolean functions (2004). arXiv:quant-ph/0403168

  21. Montanaro, A.: Nonadaptive quantum query complexity. Information Processing Letters 110(24), 1110–1113 (2010). arXiv:1001.0018

    Article  MathSciNet  Google Scholar 

  22. Montanaro, A., Jozsa, R., Mitchison, G.: On exact quantum query complexity (2011). arXiv:1111.0475

  23. Montanaro, A., Jozsa, R., Mitchison, G.: Source code used to calculate quantum query complexity. http://www.damtp.cam.ac.uk/user/am994/qc/

  24. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computational Complexity 4(4), 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Reichardt, B., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of 40th Annual ACM Symposium on Theory of Computing, pp. 103–112 (2008). arXiv:0710.2630

    Google Scholar 

  26. Reichardt, B.: Reflections for quantum query algorithms. In: Proc. 22nd ACM-SIAM Symp. Discrete Algorithms, pp. 560–569 (2011). arXiv:1005.1601

    Chapter  Google Scholar 

  27. Simon, D.R.: On the power of quantum computation. SIAM Journal on Computing 26, 1474–1483 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vasilieva, A.: Quantum query algorithm constructions for computing AND, OR and MAJORITY boolean functions (2007). arXiv:0710.5592

  29. Vasilieva, A.: Exact quantum query algorithm for error detection code verification (2009). arXiv:0904.3660

Download references

Acknowledgements

AM was supported by an EPSRC Postdoctoral Research Fellowship and would like to thank Scott Aaronson and Dan Shepherd for comments. We would also like to thank two anonymous referees for their helpful suggestions. Special thanks to Andris Ambainis and Andrey Vihrov for pointing out an error in the algorithm of Sect. 5.1 in an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Montanaro.

Appendix: A Source Code

Appendix: A Source Code

The following is an example of how the CVX package [15] can be used to determine quantum query complexity. For full source code, see [23]. In this case, we calculate the minimal error probability over all quantum algorithms using 2 queries to compute some function f:{0,1}3→{0,1} (given as a column vector).

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanaro, A., Jozsa, R. & Mitchison, G. On Exact Quantum Query Complexity. Algorithmica 71, 775–796 (2015). https://doi.org/10.1007/s00453-013-9826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9826-8

Keywords

Navigation