Skip to main content
Log in

An Efficient Scaling Algorithm for the Minimum Weight Bibranching Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let G=(VG,AG) be a digraph and let S T be a bipartition of VG. A bibranching is a subset BAG such that for each node sS there exists a directed sT path in B and, vice versa, for each node tT there exists a directed St path in B.

Bibranchings generalize both branchings and bipartite edge covers. Keijsper and Pendavingh proposed a strongly polynomial primal-dual algorithm that finds a minimum weight bibranching in O(n′(m+nlog n)) time (where n:=|VG|, m:=|AG|, n′:=min (|S|,|T|)).

Assuming that arc weights are integers we develop a weight-scaling algorithm of time complexity \(O(m\sqrt{n}\;\log n\log(nW))\) for the minimum weight bibranching problem (where W denotes the maximum magnitude of arc weights).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, M.: An efficient scaling algorithm for the minimum weight bibranching problem. Lect. Notes Comput. Sci. 5369, 232–245 (2008)

    Article  MathSciNet  Google Scholar 

  2. Cormen, T., Stein, C., Rivest, R., Leiserson, C.: Introduction to Algorithms. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  3. Dinic, E.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1980)

    Google Scholar 

  4. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. 71B, 233–240 (1967)

    MathSciNet  Google Scholar 

  5. Frank, A.: How to make a digraph strongly connected. Combinatorica 1(2), 145–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  7. Gabow, H.: A representation for crossing set families with applications to submodular flow problems. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 202–211 (1993)

  8. Gabow, H.: A framework for cost-scaling algorithms for submodular flow problems. In: SFCS ’93: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, pp. 449–458 (1993)

  9. Gabow, H., Galil, Z., Spencer, T., Tarjan, R.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2), 109–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by successive approximation. In: STOC ’87: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, pp. 7–18 (1987)

  11. Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems. SIAM J. Comput. 18(5), 1013–1036 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabow, H., Tarjan, R.: Faster scaling algorithms for general graph matching problems. J. ACM 38(4), 815–853 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keijsper, J., Pendavingh, R.: An efficient algorithm for minimum-weight bibranching. J. Comb. Theory, Ser. B 73(2), 130–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schrijver, A.: Min-max relations for directed graphs. Ann. Discrete Math. 16, 261–280 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Sleator, D., Tarjan, R.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarjan, R.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia (1983)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Babenko.

Additional information

Supported by RFBR grant 06-01-00122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, M.A. An Efficient Scaling Algorithm for the Minimum Weight Bibranching Problem. Algorithmica 61, 898–922 (2011). https://doi.org/10.1007/s00453-009-9377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9377-1

Navigation