Skip to main content
Log in

Incremental Medians via Online Bidding

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs.

Following the work of Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance. An incremental algorithm produces a nested sequence of facility sets F 1F 2⋅⋅⋅F n , where |F k |=k for each k. Such an algorithm is called c -cost-competitive if the cost of each F k is at most c times the optimum k-median cost. We give improved incremental algorithms for the metric version of this problem: an 8-cost-competitive deterministic algorithm, a 2e≈5.44-cost-competitive randomized algorithm, a (24+ε)-cost-competitive, polynomial-time deterministic algorithm, and a 6e+ε≈16.31-cost-competitive, polynomial-time randomized algorithm.

We also consider the competitive ratio with respect to size. An algorithm is s -size-competitive if the cost of each F k is at most the minimum cost of any set of k facilities, while the size of F k is at most sk. We show that the optimal size-competitive ratios for this problem, in the deterministic and randomized cases, are 4 and e. For polynomial-time algorithms, we present the first polynomial-time O(log m)-size-approximation algorithm for the offline problem, as well as a polynomial-time O(log m)-size-competitive algorithm for the incremental problem.

Our upper bound proofs reduce the incremental medians problem to the following online bidding problem: faced with some unknown threshold T∈ℝ+, an algorithm must submit “bids” b∈ℝ+ until it submits a bid bT, paying the sum of all its bids. We present folklore algorithms for online bidding and prove that they are optimally competitive.

We extend some of the above results for incremental medians to approximately metric distance functions and to incremental fractional medians. Finally, we consider a restricted version of the incremental medians problem where k is restricted to one of two given values, for which we give a deterministic algorithm with a nearly optimal cost-competitive ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer, A., Rajagopalan, R., Shmoys, D.B.: Lagrangian relaxation for the k-median problem: new insights and continuity properties. In: Proc. 11th European Symp. on Algorithms (ESA), pp. 31–42 (2003)

  2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problems. In: Proc. 33rd Symp. Theory of Computing (STOC), pp. 21–29. ACM, New York (2001)

    Google Scholar 

  3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Proc. 46th Symp. Foundations of Computer Science (FOCS), pp. 293–304 (2006)

  5. Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Automata, Languages and Programming, pp. 646–657 (1996)

  6. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. In: Proc. 29th Symp. Theory of Computing (STOC), pp. 626–635. ACM, New York (1997)

    Google Scholar 

  7. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: Proc. 40th Symp. Foundations of Computer Science (FOCS), pp. 378–388. IEEE, New York (1999)

    Google Scholar 

  8. Charikar, M., Guha, S.: Improved combinatorial algorithms for facility location problems. SIAM J. Comput. 34(4), 803–824 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. In: Proc. 31st Symp. Theory of Computing (STOC), pp. 1–10. ACM, New York (1999)

    Google Scholar 

  10. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with ε-resource augmentation. In: Proc. 36th Symp. Theory of Computing (STOC), pp. 363–372. ACM, New York (2004)

    Google Scholar 

  11. Chrobak, M., Kenyon, C., Noga, J., Young, N.: Online medians via online bidding. In: Proc. 7th Latin American Theoretical Informatics Symp. (LATIN). Lecture Notes in Computer Science, vol. 3887, pp. 311–322. Springer, Berlin (2006)

    Google Scholar 

  12. Chrobak, M., Kenyon, C., Young, N.E.: The reverse greedy algorithm for the k-median problem. Inf. Process. Lett. 97, 68–72 (2006)

    Article  MathSciNet  Google Scholar 

  13. Dasgupta, S., Long, P.M.: Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci. 70(4), 555–569 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fagin, R., Stockmeyer, L.: Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30, 219–231 (1998)

    Article  Google Scholar 

  15. Goemans, M., Kleinberg, J.: An improved approximation ratio for the minimum latency problem. In: Proc. 7th Symp. on Discrete Algorithms (SODA), pp. 152–158. ACM/SIAM, New York (1996)

    Google Scholar 

  16. Goemans, M., Kleinberg, J.: An improved approximation ratio for the minimum latency problem. Math. Program. 82(1), 111–124 (1998)

    Article  MathSciNet  Google Scholar 

  17. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50, 795–824 (2003)

    Article  MathSciNet  Google Scholar 

  18. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proc. 34th Symp. Theory of Computing (STOC), pp. 731–740. ACM, New York (2002)

    Google Scholar 

  19. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48, 274–296 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47, 214–221 (2000)

    Article  MathSciNet  Google Scholar 

  21. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–80 (1996). Preliminary version appeared in the Proceedings of the Symp. on Discrete Algorithms, Austin, TX, January 1993

    Article  MATH  MathSciNet  Google Scholar 

  22. Korupolu, M.R., Greg Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. J. Algorithms 37, 146–188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proc. 40th Symp. Foundations of Computer Science (FOCS), pp. 444–449. IEEE, New York (1999)

    Google Scholar 

  24. Lin, G., Nagarajan, C., Rajamaran, R., Williamson, D.P.: A general approach for incremental approximation and hierarchical clustering. In: Proc. 17th Symp. on Discrete Algorithms (SODA). ACM/SIAM, New York (2006)

    Google Scholar 

  25. Lin, J.-H., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44, 245–249 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lin, J.-H., Vitter, J.S.: ε-approximations with minimum packing constraint violation (extended abstract). In: Proc. 24th Symp. Theory of Computing (STOC), pp. 771–782. ACM, New York (1992)

    Google Scholar 

  27. Mettu, R.R., Greg Plaxton, C.: The online median problem. In: Proc. 41st Symp. Foundations of Computer Science (FOCS), pp. 339–348. IEEE, New York (2000)

    Chapter  Google Scholar 

  28. Mettu, R.R., Greg Plaxton, C.: The online median problem. SIAM J. Comput. 32, 816–832 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theor. Comput. Sci. 130(1), 17–47 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Young, N.E.: K-medians, facility location, and the Chernoff–Wald bound. In: Proc. 11th Symp. on Discrete Algorithms (SODA), pp. 86–95. ACM/SIAM, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal E. Young.

Additional information

The conference version of this paper appeared in (Chrobak, M., et al. in Lecture Notes in Computer Science, vol. 3887, pp. 311–322, 2006).

Research of M. Chrobak supported by NSF Grant CCR-0208856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrobak, M., Kenyon, C., Noga, J. et al. Incremental Medians via Online Bidding. Algorithmica 50, 455–478 (2008). https://doi.org/10.1007/s00453-007-9005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9005-x

Keywords

Navigation