Skip to main content
Log in

‘Dark’ CO2 fixation in succinate fermentations enabled by direct CO2 delivery via hollow fiber membrane carbonation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Anaerobic succinate fermentations can achieve high-titer, high-yield performance while fixing CO2 through the reductive branch of the tricarboxylic acid cycle. To provide the needed CO2, conventional media is supplemented with significant (up to 60 g/L) bicarbonate (HCO3), and/or carbonate (CO32−) salts. However, producing these salts from CO2 and natural ores is thermodynamically unfavorable and, thus, energetically costly, which reduces the overall sustainability of the process. Here, a series of composite hollow fiber membranes (HFMs) were first fabricated, after which comprehensive CO2 mass transfer measurements were performed under cell-free conditions using a novel, constant-pH method. Lumen pressure and total HFM surface area were found to be linearly correlated with the flux and volumetric rate of CO2 delivery, respectively. Novel HFM bioreactors were then constructed and used to comprehensively investigate the effects of modulating the CO2 delivery rate on succinate fermentations by engineered Escherichia coli. Through appropriate tuning of the design and operating conditions, it was ultimately possible to produce up to 64.5 g/L succinate at a glucose yield of 0.68 g/g; performance approaching that of control fermentations with directly added HCO3/CO32− salts and on par with prior studies. HFMs were further found to demonstrate a high potential for repeated reuse. Overall, HFM-based CO2 delivery represents a viable alternative to the addition of HCO3/CO32− salts to succinate fermentations, and likely other ‘dark’ CO2-fixing fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available upon request.

References

  1. Bissolli P, Ganter C, Li T et al (2020) State of the Climate in 2019: Global Climate. Bull Am Meteorol Soc 101:S321–S420

    Article  Google Scholar 

  2. Pfleger BF, Takors R (2023) Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2023.102913

    Article  PubMed  Google Scholar 

  3. Liu Z, Wang K, Chen Y et al (2020) Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal 3:274–288. https://doi.org/10.1038/s41929-019-0421-5

    Article  CAS  Google Scholar 

  4. Bar-Even A, Noor E, Milo R (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63:2325–2342. https://doi.org/10.1093/jxb/err417

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Jantama K, Moore JC et al (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci U S A 106:20180–20185. https://doi.org/10.1073/pnas.0905396106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Tan Z, Zhu X, Chen J et al (2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Appl Environ Microbiol 79:4838–4844. https://doi.org/10.1128/AEM.00826-13

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jantama K, Haupt MJ, Svoronos SA et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153. https://doi.org/10.1002/bit.21694

    Article  CAS  PubMed  Google Scholar 

  8. Jantama K, Zhang X, Moore JC et al (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101:881–893. https://doi.org/10.1002/bit.22005

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Zhao G, Sun S et al (2022) Biosynthetic Pathways and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 10:1–16. https://doi.org/10.3389/fbioe.2022.843887

    Article  Google Scholar 

  10. Cortada-Garcia J, Haggarty J, Moses T et al (2022) On-line untargeted metabolomics monitoring of an Escherichia coli succinate fermentation process. Biotechnol Bioeng 119:2757–2769. https://doi.org/10.1002/bit.28173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harmsen PFH, Hackmann MM, Bos HL (2014) Green building blocks for bio-based plastics. Biofuels, Bioprod Biorefin 8:306–324. https://doi.org/10.1002/bbb.1468

    Article  CAS  Google Scholar 

  12. Jansen MLA, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 30:190–197. https://doi.org/10.1016/j.copbio.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Li Q, Li W et al (2009) Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microb Technol 45:491–497. https://doi.org/10.1016/j.enzmictec.2009.08.003

    Article  CAS  Google Scholar 

  14. Shen N, Wang Q, Qin Y et al (2014) Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM). Food Sci Biotechnol 23:1911–1919. https://doi.org/10.1007/s10068-014-0261-7

    Article  CAS  Google Scholar 

  15. Bonfim-Rocha L, Silva AB, De Faria SHB et al (2020) Production of Sodium Bicarbonate from CO2 Reuse Processes: A Brief Review. Int J Chem React Eng. https://doi.org/10.1515/ijcre-2018-0318

    Article  Google Scholar 

  16. de Carvalho Pinto PC, de Oliveira Carvalho MM, Linhares FM et al (2015) A cleaner production of sodium hydrogen carbonate: Partial replacement of lime by steel slag milk in the ammonia recovery step of the solvay process. Clean Technol Environ Policy 17:2311–2321. https://doi.org/10.1007/s10098-015-0973-2

    Article  CAS  Google Scholar 

  17. Kasikowski T, Buczkowski R, Lemanowska E (2004) Cleaner production in the ammonia-soda industry: An ecological and economic study. J Environ Manage 73:339–356. https://doi.org/10.1016/j.jenvman.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Xie H, Liu T et al (2019) Soda Ash Production with Low Energy Consumption Using Proton Cycled Membrane Electrolysis. Ind Eng Chem Res 58:3450–3458. https://doi.org/10.1021/acs.iecr.8b05371

    Article  CAS  Google Scholar 

  19. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenhouse Gas Control 10:456–469. https://doi.org/10.1016/j.ijggc.2012.07.010

    Article  CAS  Google Scholar 

  20. Akkarawatkhoosith N, Nopcharoenkul W, Kaewchada A, Jaree A (2020) Mass transfer correlation and optimization of carbon dioxide capture in a microchannel contactor: A case of CO2-rich gas. Energies (Basel). https://doi.org/10.3390/en13205465

    Article  Google Scholar 

  21. Cadogan SP, Maitland GC, Trusler JPM (2014) Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa. J Chem Eng Data 59:519–525. https://doi.org/10.1021/je401008s

    Article  CAS  Google Scholar 

  22. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. https://doi.org/10.1007/s10811-005-8701-7

    Article  Google Scholar 

  23. Kumar A, Yuan X, Sahu AK et al (2010) A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. J Chem Technol Biotechnol 85:387–394. https://doi.org/10.1002/jctb.2332

    Article  CAS  Google Scholar 

  24. Zheng Q, Xu X, Martin GJO, Kentish SE (2018) Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chin J Chem Eng 26:2219–2228. https://doi.org/10.1016/j.cjche.2018.07.013

    Article  CAS  Google Scholar 

  25. Kim HW, Marcus AK, Shin JH, Rittmann BE (2011) Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environ Sci Technol 45:5032–5038. https://doi.org/10.1021/es104235v

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Xia S, Xu X, Zhou C et al (2016) Direct delivery of CO2 into a hydrogen-based membrane biofilm reactor and model development. Chem Eng J 290:154–160. https://doi.org/10.1016/j.cej.2016.01.021

    Article  CAS  Google Scholar 

  27. Kobayashi M, Agari R, Kigo Y, Terada A (2022) Efficient oxygen supply and rapid biofilm formation by a new composite polystyrene elastomer membrane for use in a membrane-aerated biofilm reactor. Biochem Eng J 183:108442. https://doi.org/10.1016/j.bej.2022.108442

    Article  CAS  Google Scholar 

  28. Tang Y, Zhou C, Van Ginkel SW et al (2012) Hydrogen permeability of the hollow fibers used in H2-based membrane biofilm reactors. J Memb Sci 407–408:176–183. https://doi.org/10.1016/j.memsci.2012.03.040

    Article  CAS  Google Scholar 

  29. Lai YJS, Eustance E, Shesh T, Rittmann BE (2020) Enhanced carbon-transfer and -utilization efficiencies achieved using membrane carbonation with gas sources having a range of CO2 concentrations. Algal Res. https://doi.org/10.1016/j.algal.2020.102098

    Article  Google Scholar 

  30. Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: Plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272. https://doi.org/10.1021/bp000157v

    Article  CAS  PubMed  Google Scholar 

  31. Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346. https://doi.org/10.1016/j.biortech.2013.01.124

    Article  CAS  PubMed  Google Scholar 

  32. Bongartz P, Bator I, Baitalow K et al (2021) A scalable bubble-free membrane aerator for biosurfactant production. Biotechnol Bioeng 118:3545–3558. https://doi.org/10.1002/bit.27822

    Article  CAS  PubMed  Google Scholar 

  33. Henzler H-J (2000) Influence of stress on cell growth and product formation: particle stress in bioreactors. Adv Biochem Eng Biotech 38–55

  34. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329. https://doi.org/10.1016/j.seppur.2005.12.006

    Article  CAS  Google Scholar 

  35. Fan LH, Zhang YT, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Memb Sci 325:336–345. https://doi.org/10.1016/j.memsci.2008.07.044

    Article  CAS  Google Scholar 

  36. Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibres for carbon dioxide absorption: Mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol 71:61–70. https://doi.org/10.1002/(SICI)1097-4660(199801)71:1%3c61::AID-JCTB785%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  37. Fan L, Zhang Y, Cheng L et al (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30:1094–1099. https://doi.org/10.1002/ceat.200700141

    Article  CAS  Google Scholar 

  38. Kim HW, Cheng J, Rittmann BE (2016) Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. Bioresour Technol 204:32–37. https://doi.org/10.1016/j.biortech.2015.12.066

    Article  CAS  PubMed  Google Scholar 

  39. Shesh T, Eustance E, Lai YJ, Rittmann BE (2019) Characterization of CO2 flux through hollow-fiber membranes using pH modeling. J Memb Sci. https://doi.org/10.1016/j.memsci.2019.117389

    Article  Google Scholar 

  40. Flores AD, Holland SC, Mhatre A et al (2021) A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO2 recycling. Metab Eng 67:387–395. https://doi.org/10.1016/j.ymben.2021.08.001

    Article  CAS  PubMed  Google Scholar 

  41. Spona-Friedl M, Braun A, Huber C et al (2020) Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. FEMS Microbiol Ecol 96:1–13. https://doi.org/10.1093/femsec/fiaa080

    Article  CAS  Google Scholar 

  42. Wang Z, Ma J, Tang CY et al (2014) Membrane cleaning in membrane bioreactors: A review. J Memb Sci 468:276–307. https://doi.org/10.1016/j.memsci.2014.05.060

    Article  CAS  Google Scholar 

  43. Sydney EB, Sturm W, de Carvalho JC et al (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896. https://doi.org/10.1016/j.biortech.2010.02.088

    Article  CAS  PubMed  Google Scholar 

  44. Ho SH, Kondo A, Hasunuma T, Chang JS (2013) Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresour Technol 143:163–171. https://doi.org/10.1016/j.biortech.2013.05.043

    Article  CAS  PubMed  Google Scholar 

  45. Merlin C, Mcateer S, Coulson A (2003) Why Is Carbonic Anhydrase Essential to. J Bacteriol 185:6415–6424. https://doi.org/10.1128/JB.185.21.6415-6424.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu JH, Zhu LW, Xia ST et al (2016) Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnol Bioeng 113:1531–1541. https://doi.org/10.1002/bit.25927

    Article  CAS  PubMed  Google Scholar 

  47. Zhu LW, Zhang L, Wei LN et al (2015) Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Sci Rep 5:1–12. https://doi.org/10.1038/srep17321

    Article  CAS  Google Scholar 

  48. Cotelesage JJH, Puttick J, Goldie H et al (2007) How does an enzyme recognize CO2? Int J Biochem Cell Biol 39:1204–1210. https://doi.org/10.1016/j.biocel.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Jantama K, Shanmugam KT, Ingram LO (2009) Reengineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75:7807–7813. https://doi.org/10.1128/AEM.01758-09

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu S, Eiteman MA, Altman E (2009) Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol 143:213–223. https://doi.org/10.1016/j.jbiotec.2009.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Science Foundation (CBET- 2148629). IW was supported by a Presidential Graduate Fellowship from Arizona State University. Data analysis was conducted with GraphPad Prism 10. Figures were made using Biorender.com and GraphPad Prism 10.

Author information

Authors and Affiliations

Authors

Contributions

AG, BER, XW, and DN conceived and designed the research. YL and BER advised on membrane design and bioreactor implementation. AG and IW collected CO2 delivery data and AG analyzed the data with the guidance of DN. AG, TC, and DC conducted all cell culture experiments and interpreted/analyzed data with the support of XW and DN. DR prepared and ran SEM samples with the support of KS. AG, BER, XW, and DN wrote the manuscript. All authors read, edited, and approved the manuscript.

Corresponding author

Correspondence to David R. Nielsen.

Ethics declarations

Conflict of interest

The authors declare that there was no commercial or financial conflict of interest associated with the research and content of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godar, A.G., Chase, T., Conway, D. et al. ‘Dark’ CO2 fixation in succinate fermentations enabled by direct CO2 delivery via hollow fiber membrane carbonation. Bioprocess Biosyst Eng 47, 223–233 (2024). https://doi.org/10.1007/s00449-023-02957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02957-3

Keywords

Navigation