Skip to main content
Log in

Enhancing diversified extracellular electron transfer (EET) processes through N-MXene-modified non-adhesive hydrogel bioanodes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The focus of this study is to develop a high-performance anode material for microbial fuel cells (MFCs). PEDOT:PSS and nitrogen-modified MXene were combined to create a hydrogel composite material called PPNM, which was drop-cast onto carbon felt (CF) as the MFCs anode. The PPNM exhibited a higher peak power density of 4.78 W m−2, an increase of 332% compared to the CF anode. It is worth noting that the PPNM Hydrogel maintains its rough and porous structure, providing favorable sites for bacterial colonization. The introduction of N-MXene has improved the electrochemical performance of the hydrogel, particularly impacting the mediated electron transfer process. Microbial community analysis revealed the presence of more electrochemically active species on the PPNM anode. These findings highlight the potential of PPNM hydrogel and pave the way for similar strategies in achieving high-performance anodes in MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Date will be made available on request.

References

  1. Yaqoob AA, Ibrahim MNM, Guerrero-Barajas C (2021) Modern trend of anodes in microbial fuel cells (MFCs): an overview. Environ Technol Innov 23:101579

    Article  CAS  Google Scholar 

  2. Ma J, Zhang J, Zhang Y et al (2023) Progress on anodic modification materials and future development directions in microbial fuel cells. J Power Sources 556:232486

    Article  CAS  Google Scholar 

  3. Javadi M, Gu Q, Naficy S et al (2018) Conductive tough hydrogel for bioapplications. Macromol Biosci 18(2):1700270

    Article  Google Scholar 

  4. Lu B, Yuk H, Lin S et al (2019) Pure pedot: Pss hydrogels. Nat Commun 10(1):1043

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jung S, Zafar U, Achary LSK et al (2023) Ligand chemistry for surface functionalization in MXenes: a review. EcoMat. https://doi.org/10.1002/eom2.12395

    Article  Google Scholar 

  6. Saha D, Dalmieda J, Patel V (2023) Surface-modified MXenes: simulation to potential applications. ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.3c00076

    Article  Google Scholar 

  7. Cheng WX, Chen YZ, Liao SY et al (2022) Synthesis of MoS2@ N-MXene/C heterogeneous nanosheets and its enhanced pseudocapacitance effects for NIBs. ChemElectroChem 9(22):e202200715

    Article  CAS  Google Scholar 

  8. Muro K, Watanabe M, Tamai T et al (2016) PEDOT/PSS nanoparticles: synthesis and properties. RSC Adv 6(90):87147–87152

    Article  CAS  Google Scholar 

  9. Sun S, Liao C, Hafez AM et al (2018) Two-dimensional MXenes for energy storage. Chem Eng J 338:27–45

    Article  CAS  Google Scholar 

  10. Hong S, Lee DM, Park M et al (2020) Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen. Carbon 167:881–887

    Article  Google Scholar 

  11. Lee Y, Kim SJ, Kim Y-J, Lim Y, Chae Y, Lee B-J, Kim Y-T, Han H, Gogotsi Y, Ahn CW et al (2020) Oxidation-resistant titanium carbide MXene films. J Mater Chem A 8(2):573–581

    Article  CAS  Google Scholar 

  12. Law K-Y (2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 5:686–688

    Article  CAS  PubMed  Google Scholar 

  13. Liu YQ, Zhang Y, Zhou JP et al (2023) Effect of Ti3C2Tx/Ag MXene fillers on the electrical conductivity of Ag-coated Cu conductive adhesives. Ceram Int. https://doi.org/10.1016/j.ceramint.2023.05.018

    Article  Google Scholar 

  14. Wang H, Long X, Sun Y et al (2022) Electrochemical impedance spectroscopy applied to microbial fuel cells: a review. Front Microbiol 13:973501

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar H, Frey NC, Dong L et al (2017) Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11(8):7648–7655

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Duan C, Duan W et al (2021) Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): a review. J Clean Prod 301:126951

    Article  Google Scholar 

  17. Senthilkumar N, Pannipara M, Al-Sehemi AG (2019) PEDOT/NiFe 2 O 4 nanocomposites on biochar as a free-standing anode for high-performance and durable microbial fuel cells. New J Chem 43(20):7743–7750

    Article  CAS  Google Scholar 

  18. Faruk O, Adak B (2023) Recent advances in PEDOT: PSS integrated graphene and MXene-based composites for electrochemical supercapacitor applications. Synth Met 297:117384

    Article  CAS  Google Scholar 

  19. Wang Y, Pan X, Chen Y et al (2020) A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J Appl Electrochem 50:1281–1290

    Article  CAS  Google Scholar 

  20. Paul D, Noori MT, Rajesh PP et al (2018) Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustainable Energy Technol Assess 26:77–82

    Article  Google Scholar 

  21. Yang J, Cheng S, Sun Y et al (2017) Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotech Lett 39:1515–1520

    Article  CAS  Google Scholar 

  22. Tanaka S, Starikov EB (2010) Analysis of electron-transfer rate constant in condensed media with inclusion of inelastic tunneling and nuclear quantum effects. Phys Rev E 81(2):027101

    Article  Google Scholar 

  23. Wang R, Wang X, Zhou X et al (2020) Effect of anolytic nitrite concentration on electricity generation and electron transfer in a dual-chamber microbial fuel cell. Environ Sci Pollut Res 27:9910–9918

    Article  CAS  Google Scholar 

  24. Roy AS, Sharma A, Thapa BS et al (2022) Microbiomics for enhancing electron transfer in an electrochemical system. Front Microbiol 13:868220

    Article  PubMed  PubMed Central  Google Scholar 

  25. Song J, Li Y, Wang S et al (2023) Membrane fouling mitigation and EPS reduction by CNTs-TiO2-PEDOT modified anode-membrane in Membrane Electro-Bioreactor (MEBR) treating mariculture wastewater. Desalination. https://doi.org/10.1016/j.desal.2023.116971

    Article  Google Scholar 

  26. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34(7):1225–1244

    Article  CAS  PubMed  Google Scholar 

  27. Yu W, Li Y, Xin B et al (2022) MXene/PVA Fiber-based supercapacitor with stretchability for wearable energy storage. Fibers Polym 23(11):2994–3001

    Article  CAS  Google Scholar 

  28. Zhao C, Ding C, Lv M et al (2016) Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Adv 6(27):22488–22493

    Article  CAS  Google Scholar 

  29. You S, Ma M, Wang W et al (2017) 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv Energy Mater 7(4):1601364

    Article  Google Scholar 

  30. Hu J, Zeng C, Liu G et al (2023) Carbon dots internalization enhances electroactive biofilm formation and microbial acetate synthesis. J Clean Prod 411:137333

    Article  CAS  Google Scholar 

  31. Tian X, Zhou M, Tan C et al (2018) KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells. Chem Eng J 348:775–785

    Article  CAS  Google Scholar 

  32. Sun Y, Duan Y, Hao L et al (2016) Cornstalk-derived nitrogen-doped partly graphitized carbon as efficient metal-free catalyst for oxygen reduction reaction in microbial fuel cells. ACS Appl Mater Interfaces 8(39):25923–25932

    Article  CAS  PubMed  Google Scholar 

  33. Ren H, Lee HS, Zhang J et al (2021) A quantitative extracellular electron transfer (EET) kinetics study of Geobacter sulfurreducens enriched microbial community reveals the transition of EET limiting step during biofilm growth. Int J Hydrogen Energy 46(4):3124–3134

    Article  CAS  Google Scholar 

  34. Espinoza-Tofalos A, Daghio M, Palma E et al (2020) Structure and functions of hydrocarbon-degrading microbial communities in bioelectrochemical systems. Water 12:343

    Article  CAS  Google Scholar 

  35. Kumar R, Singh L, Zularisam AW (2016) Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev 56:1322–1336

    Article  CAS  Google Scholar 

  36. Bittrich E, Mele F, Janke A et al (2018) Interactions of bioactive molecules with thin dendritic glycopolymer layers. Biointerphases. https://doi.org/10.1116/1.5042703

    Article  PubMed  Google Scholar 

  37. Long X, Cao X, Song H et al (2019) Characterization of electricity generation and microbial community structure over long-term operation of a microbial fuel cell. Biores Technol 285:121395

    Article  CAS  Google Scholar 

  38. Liao C, Wu J, Zhou L et al (2018) Repeated transfer enriches highly active electrotrophic microbial consortia on biocathodes in microbial fuel cells. Biosens Bioelectron 121:118–124

    Article  CAS  PubMed  Google Scholar 

  39. Logan BE, Rossi R, Ragab A et al (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17(5):307–319

    Article  CAS  PubMed  Google Scholar 

  40. Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  41. Yong YC, Wu XY, Sun JZ et al (2015) Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140:18–25

    Article  CAS  PubMed  Google Scholar 

  42. Jiang H, Liu L, Zhao K et al (2020) Effect of pyridinic-and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim Acta 337:135758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (22278095).

Funding

National Natural Science Foundation of China (22278095).

Author information

Authors and Affiliations

Authors

Contributions

Linhan Zhong: Conceptualization, Methodology, Software, Investigation, Formal analysis, Writing—original draft. Ye Chen: Resources, Funding acquisition, Validation, Writing—review & editing, Project administration. Qing Wen: Resources, Funding acquisition, Validation, Writing—review & editing. Yang Yang: Resources, Funding acquisition, Validation.

Corresponding author

Correspondence to Ye Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Chen, Y., Wen, Q. et al. Enhancing diversified extracellular electron transfer (EET) processes through N-MXene-modified non-adhesive hydrogel bioanodes. Bioprocess Biosyst Eng 47, 105–117 (2024). https://doi.org/10.1007/s00449-023-02950-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02950-w

Keywords

Navigation