Skip to main content
Log in

Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The main objective of the current study is to fabricate a 3D scaffold using alginate hydrogel implemented with carbon nanoparticles (CNPs) as the filler. The SEM imaging revealed that the scaffold possesses a porous internal structure with interconnected pores. The swelling value of the scaffolds (more than 400%) provides a wet niche for bone cell proliferation and migration. The in vitro evaluations showed that the scaffolds were hemocompatible (with hemolysis induction lower than 5%) and cytocompatible (inducing significant proliferative effect (cell viability of 121 ± 4%, p < 0.05) for AlG/CNPs 10%). The in vivo studies showed that the implantation of the fabricated 3D nanocomposite scaffolds induced a bone-forming effect and mediated bone formation into the induced bone defect. In conclusion, these results implied that the fabricated NFC-integrated 3D scaffold exhibited promising characteristics beneficial for bone regeneration and can be applied as the bone tissue engineering scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR (2014) Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184:3192–3204

    Article  CAS  PubMed  Google Scholar 

  2. Csaki C, Schneider P, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Annals of Anatomy-Anatomischer Anzeiger 190:395–412

    Article  CAS  Google Scholar 

  3. Toh WS, Lee EH, Cao T (2011) Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem cell reviews and reports 7:544–559

    Article  PubMed  Google Scholar 

  4. Yousefi A-M, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem cells Int 6:2016

    Google Scholar 

  5. Liu Y, Chan JK, Teoh SH (2015) Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 9:85–105

    Article  CAS  PubMed  Google Scholar 

  6. Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM (2015) Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11:140–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basha RY, Sampath Kumar TS, Doble M (2015) Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng 57:452–463

    Article  Google Scholar 

  8. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  PubMed  Google Scholar 

  9. Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, Zarghami N (2017) Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 43:1978–1988

  10. Firouzi-Amandi A, Dadashpour M, Nouri M, Zarghami N, Serati-Nouri H, Jafari-Gharabaghlou D, Karzar BH, Mellatyar H, Aghebati-Maleki L, Babaloo Z, Pilehvar-Soltanahmadi Y (2018) Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: possible application in tissue regeneration. Biomed Pharmacother 105:773–780

  11. Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y (2021) Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm 604:120733

  12. Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014

  13. Serati-Nouri H, Mahmoudnezhad A, Bayrami M, Sanajou D, Tozihi M, Roshangar L, Pilehvar Y, Zarghami N (2021) Sustained delivery efficiency of curcumin through ZSM-5 nanozeolites/electrospun nanofibers for counteracting senescence of human adipose-derived stem cells. J Drug Deliv Sci Technol 66:102902

  14. Kusmanto F, Walker G, Gan Q, Walsh P, Buchanan F, Dickson G, McCaigue M, Maggs C, Dring M (2008) Development of composite tissue scaffolds containing naturally sourced mircoporous hydroxyapatite. Chem Eng J 139:398–407

    Article  CAS  Google Scholar 

  15. Chen Y, Mak AF, Wang M, Li J, Wong MS (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol 201:575–580

    Article  CAS  Google Scholar 

  16. Ahmadi S, Pilehvar Y, Zarghami N, Abri A (2021) Efficient osteoblastic differentiation of human adipose-derived stem cells on TiO2 nanoparticles and metformin co-embedded electrospun composite nanofibers. J Drug Deliv Sci Technol 66:102798

  17. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28

    Article  CAS  PubMed  Google Scholar 

  18. Fang Z, Starly B, Sun W (2005) Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Comput Aided Des 37:65–72

    Article  Google Scholar 

  19. Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Part I Tradit Fact Tiss Eng 7:679–689

    CAS  Google Scholar 

  20. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99

    Article  CAS  Google Scholar 

  21. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  CAS  PubMed  Google Scholar 

  22. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JW (2013) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthcare Mater 2:186–194

    Article  CAS  Google Scholar 

  23. Mashayekhi S, Rasoulpoor S, Shabani S, Esmaeilizadeh N, Serati-Nouri H, Sheervalilou R, Pilehvar-Soltanahmadi Y (2020) Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells. Int J Pharm 587:119656

  24. Ehterami A, Etemadi Haghighi S (2018) Preparation and characterization of barium titanate scaffold for bone tissue engineering. Modares Mechan Eng 17:417–422

    Google Scholar 

  25. Azami M, Moztarzadeh F, Rabiee M (2010) Preparation of nanocomposite gelatin/apatite scaffold through a biomimetic method. Iranian J Biomed Eng 3:275–284

    Google Scholar 

  26. Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, Lech MP, Morgan JR (2007) Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 43:494–500

    Article  CAS  PubMed  Google Scholar 

  27. Liao IC, Moutos FT, Estes BT, Zhao X, Guilak F (2013) Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv Func Mater 23:5833–5839

    Article  CAS  Google Scholar 

  28. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F (2019) Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 30:1–10

    Article  CAS  Google Scholar 

  29. Habib A, Sathish V, Mallik S, Khoda B (2018) 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials 11:454

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4:133–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sosnik A (2014) Alginate particles as platform for drug delivery by the oral route: state-of-the-art. International Scholarly Research Notices 2014

  32. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. Polysaccharides and polyamides in the food industry: properties, production, and patents, 1–30

  33. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Draget K, Bræk GS, Smidsrød O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohyd Polym 25:31–38

    Article  CAS  Google Scholar 

  36. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthopae Relat Res® 355:S7–S21

    Article  Google Scholar 

  37. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  38. Peng C, Wang X, Chen J, Jiao R, Wang L, Li YM, Zuo Y, Liu Y, Lei L, Ma KY (2014) Biology of ageing and role of dietary antioxidants. BioMed Res Int 2014:1–13

    Google Scholar 

  39. de Magalhães JP (2011) The biology of ageing. An introduction to gerontology. https://doi.org/10.1017/CBO9780511973697.002

    Article  Google Scholar 

  40. Cornell CN, Lane JM (1992) Newest factors in fracture healing. Clin Orthopaed Relat Res 277:297–311

    Article  Google Scholar 

  41. Kojima I, Tanaka T, Inagi R, Kato H, Yamashita T, Sakiyama A, Ohneda O, Takeda N, Sata M, Miyata T (2007) Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol 18:1218–1226

    Article  CAS  PubMed  Google Scholar 

  42. Fontani F, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT (2015) Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling. Calcif Tissue Int 96:335–346

    Article  CAS  PubMed  Google Scholar 

  43. Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT (2017) Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 14:209

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tian Q, Qin B, Gu Y, Zhou L, Chen S, Zhang S, Zhang S, Han Q, Liu Y, Wu X (2020) ROS-mediated necroptosis is involved in iron overload-induced osteoblastic cell death. Oxidative Med Cell Longevity. https://doi.org/10.1155/2020/1295382

    Article  Google Scholar 

  45. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46:1550–1555

    Article  CAS  PubMed  Google Scholar 

  46. Jun JH, Lee SH, Kwak HB, Lee ZH, Seo SB, Woo KM, Ryoo HM, Kim GS, Baek JH (2008) N-acetylcysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem 103:1246–1255

    Article  CAS  PubMed  Google Scholar 

  47. Marrazzo P, Angeloni C, Freschi M, Lorenzini A, Prata C, Maraldi T, Hrelia S (2018) Combination of epigallocatechin gallate and sulforaphane counteracts in vitro oxidative stress and delays stemness loss of amniotic fluid stem cells. Oxidative Med Cell Longevity. https://doi.org/10.1155/2018/5263985

    Article  Google Scholar 

  48. Kim KS, Lee D, Song CG, Kang PM (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10:2709–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi S, Xue F (2016) Current antioxidant treatments in organ transplantation. Oxidative Med cell Longev. https://doi.org/10.1155/2016/8678510

    Article  Google Scholar 

  50. Yuan L, Shen J (2016) Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury? Clinics 71:544–549

    Article  PubMed  PubMed Central  Google Scholar 

  51. Battula NR, Andreoni KA (2019) Oxygenated preservation solutions for organ preservation. Transplantation 103:233–234

    Article  PubMed  Google Scholar 

  52. Marrazzo P, O’Leary C (2020) Repositioning natural antioxidants for therapeutic applications in tissue engineering. Bioengineering 7:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  PubMed  Google Scholar 

  54. Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Sadatlu MAA, Ghasemi A, Abbaspour S, Akbarian M, Farjadain F, Karimi M (2020) Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomed 15:9469

    Article  CAS  Google Scholar 

  55. Zhou C, He X, Ya D, Zhong J, Deng B (2017) One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma. Sens Actuators, B Chem 249:256–264

    Article  CAS  Google Scholar 

  56. Suryawanshi A, Biswal M, Mhamane D, Gokhale R, Patil S, Guin D, Ogale S (2014) Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale 6:11664–11670

    Article  CAS  PubMed  Google Scholar 

  57. Kozak O, Sudolska M, Pramanik G, Cigler P, Otyepka M, Zboril R (2016) Photoluminescent carbon nanostructures. Chem Mater 28:4085–4128

    Article  CAS  Google Scholar 

  58. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30

    Article  CAS  PubMed  Google Scholar 

  59. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips DL (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136:3760–3763

    Article  CAS  PubMed  Google Scholar 

  60. Bagheri Z, Ehtesabi H, Hallaji Z, Latifi H, Behroodi E (2018) Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicol Environ Saf 161:245–250

    Article  CAS  PubMed  Google Scholar 

  61. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  PubMed  Google Scholar 

  62. Jelinek R (2017) Carbon quantum dots. Carbon quantum dots. Springer International Publishing, Cham, pp 29–46

    Book  Google Scholar 

  63. Kedare SB, Singh R (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fischer KM, Morgan KY, Hearon K, Sklaviadis D, Tochka ZL, Fenton OS, Anderson DG, Langer R, Freed LE (2016) Poly (limonene thioether) scaffold for tissue engineering. Adv Healthcare Mater 5:813–821

    Article  CAS  Google Scholar 

  65. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DAJBri, (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res Int. https://doi.org/10.1155/2015/729076

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  CAS  PubMed  Google Scholar 

  67. Urist MR, Silverman BF, Düring K, Dubuc FL, Rosenberg JMJCO (1967) 24 The Bone Induction Principle. Clin Orthopaed Rel Res 53:243–284

    Article  CAS  Google Scholar 

  68. O’brien FJJMt, (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  Google Scholar 

  69. Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai SJ (2009) Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implants Res 20:280–287

    Article  PubMed  Google Scholar 

  70. Özeç I, Kiliç E, Gümüs C, Göze FJJOCS (2007) Effect of local simvastatin application on mandibular defects. J Craniofacial Surg 18:546–550

    Article  Google Scholar 

  71. Khajuria DK, Kumar VB, Gigi D, Gedanken A (2018) Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles. ACS Appl Mater Inter 10:19373–19385

    Article  CAS  Google Scholar 

  72. Lu Y, Li L, Li M, Lin Z, Wang L, Zhang Y, Yin Q, Xia H, Han (2018) Zero-dimensional carbon dots enhance bone regeneration, osteosarcoma ablation, and clinical bacterial eradication. Bioconjugate Chem 29:2982–2993

    Article  CAS  Google Scholar 

  73. Gómez S, Vlad M, López J, Fernández EJ (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350

    Article  PubMed  Google Scholar 

  74. Chung S, King MWJB (2011) Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem 58:423–438

    Article  CAS  PubMed  Google Scholar 

  75. Wu F, Liu C, O’Neill B, Wei J, Ngothai YJASS (2012) Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl Surf Sci 258:7589–7595

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Huang.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhou, A., Jalil, A.T. et al. Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo. Bioprocess Biosyst Eng 46, 577–588 (2023). https://doi.org/10.1007/s00449-022-02843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02843-4

Keywords

Navigation