Skip to main content

Advertisement

Log in

Comparative study of effective antibiofilm activity of beneficial microbes-mediated zirconia nanoparticles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, beneficial microbes-mediated zirconia nanoparticles were prepared using endophytic bacteria isolated from the seed of Terminalia chebula which were evaluated on inhibition of bacterial adherence and promotion to exhibit antibiofilm properties. The structure and distribution of the zirconia nanoparticles were examined through SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive X-Ray spectroscopy), and XRD (X-ray diffraction analysis), which reveal the distribution of the particles. The morphology of biogenic zirconia nanoparticles was monoclinic and cubic. The formation of zirconia particle was confirmed using UV spectrum and the functional groups were intensified in FTIR (Fourier-transform infrared spectroscopy). The antibiofilm activity of the synthesized nanoparticles was tested in oral pathogens that cause biofilm by membrane integrity and leads to periodontal associated disease. The results showed that the particles had a significant effect on biofilm removal caused by oral pathogens. For determined concentration, the cytotoxicity of the endophytic bacterial facilitated zirconia nanoparticle (Zr NPs) was examined in HGF (Human gingival fibroblast cell line).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive X-ray spectroscopy

XRD:

X-ray diffraction analysis

FTIR:

Fourier-transform infrared spectroscopy

HGF:

Human gingival fibroblast cell line

Zr NPs:

Zirconia nanoparticles

SV3:

Bacillus subtilis

SV4:

Bacillus megaterium

References

  1. Ahmed T, Ren H, Noman M et al (2021) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact 21:100281. https://doi.org/10.1016/j.impact.2020.100281

    Article  CAS  PubMed  Google Scholar 

  2. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3

    Article  PubMed  Google Scholar 

  3. Ayanwale AP, Cornejo AD, González JCC et al (2018) Review of the Synthesis, characterization and application of zirconia mixed metal oxide nanoparticles. Int J Res -GRANTHAALAYAH 6:136–145. https://doi.org/10.29121/granthaalayah.v6.i8.2018.1407

    Article  Google Scholar 

  4. Sarojini G, Babu SV, Rajamohan N et al (2022) Application of a polymer-magnetic-algae based Nano-composite for the removal of methylene blue – characterization, parametric and kinetic studies. Environ Pollut 292:118376. https://doi.org/10.1016/J.ENVPOL.2021.118376

    Article  CAS  PubMed  Google Scholar 

  5. Sarojini G, Venkatesh Babu S, Rajamohan N et al (2021) Surface modified polymer-magnetic-algae nanocomposite for the removal of chromium- equilibrium and mechanism studies. Environ Res 201:111626. https://doi.org/10.1016/j.envres.2021.111626

    Article  CAS  PubMed  Google Scholar 

  6. Muthu Kumara Pandian A, Rajasimman M, Rajamohan N et al (2021) Anaerobic mixed consortium (AMC) mediated enhanced biosynthesis of silver nano particles (AgNPs) and its application for the removal of phenol. J Hazard Mater 416:125717. https://doi.org/10.1016/j.jhazmat.2021.125717

    Article  CAS  PubMed  Google Scholar 

  7. Muthu Kumara Pandian A, Gopalakrishnan B, Rajasimman M et al (2021) Green synthesis of bio-functionalized nano-particles for the application of copper removal – characterization and modeling studies. Environ Res 197:111140. https://doi.org/10.1016/j.envres.2021.111140

    Article  CAS  PubMed  Google Scholar 

  8. Lin H, Yin C, Mo A (2021) Zirconia based dental biomaterials: structure, mechanical properties, biocompatibility, surface modification, and applications as implant. Front Dent Med 2:1–7. https://doi.org/10.3389/fdmed.2021.689198

    Article  Google Scholar 

  9. Fernandez CC, Sokolonski AR, Fonseca MS et al (2021) Applications of silver nanoparticles in dentistry: advances and technological innovation. Int J Mol Sci 22:1–21. https://doi.org/10.3390/ijms22052485

    Article  CAS  Google Scholar 

  10. Gutiérrez MF, Bermudez J, Dávila-Sánchez A et al (2019) Zinc oxide and copper nanoparticles addition in universal adhesive systems improve interface stability on caries-affected dentin. J Mech Behav Biomed Mater 100:103366. https://doi.org/10.1016/j.jmbbm.2019.07.024

    Article  CAS  PubMed  Google Scholar 

  11. Jowkar Z, Fattah Z, Ghanbarian S, Shafiei F (2020) The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. Int J Nanomedicine 15:4755–4762. https://doi.org/10.2147/IJN.S262664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arena A, Prete F, Rambaldi E et al (2019) Nanostructured zirconia-based ceramics and composites in dentistry: a state-of-the-art review. Nanomaterials 9:1–14. https://doi.org/10.3390/nano9101393

    Article  CAS  Google Scholar 

  13. Milho C, Silva J, Guimarães R et al (2021) Antimicrobials from medicinal plants: an emergent strategy to control oral biofilms. Appl Sci. https://doi.org/10.3390/app11094020

    Article  Google Scholar 

  14. Precious Ayanwale A, Reyes-López SY (2019) ZrO2-ZnO nanoparticles as antibacterial agents. ACS Omega 4:19216–19224. https://doi.org/10.1021/acsomega.9b02527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elbeshehy EKF, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:1–13. https://doi.org/10.3389/fmicb.2015.00453

    Article  Google Scholar 

  16. Persson GR (2012) Rheumatoid arthritis and periodontitis - inflammatory and infectious connections. Review of the literature. J Oral Microbiol. https://doi.org/10.3402/jom.v4i0.11829

    Article  Google Scholar 

  17. Eid AM, Fouda A, Abdel-rahman MA et al (2021) Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants 10:1–33. https://doi.org/10.3390/plants10050935

    Article  CAS  Google Scholar 

  18. Zheng S, Bawazir M, Dhall A et al (2021) Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front Bioeng Biotechnol 9:1–22. https://doi.org/10.3389/fbioe.2021.643722

    Article  Google Scholar 

  19. Vasiliu S, Racovita S, Gugoasa I et al (2021) The benefits of smart nanoparticles in dental applications to cite this version : HAL Id : hal-03169023 the benefits of smart nanoparticles in dental applications. Int J Mol Sci 22:2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horti NC, Kamatagi MD, Nataraj SK et al (2020) Structural and optical properties of zirconium oxide (ZrO 2) nanoparticles: effect of calcination temperature. Nano Express 1:010022. https://doi.org/10.1088/2632-959x/ab8684

    Article  Google Scholar 

  21. Bapat RA, Yang J, Chaubal TV, Dharmadhikari S (2022) Review on synthesis, properties and multifarious. RSC Adv. https://doi.org/10.1039/d2ra00006g

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP et al (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241. https://doi.org/10.1007/s13204-017-0561-3

    Article  CAS  Google Scholar 

  23. Karthiga P, Ponnanikajamideen M, Samuel Rajendran R et al (2019) Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug Chem Toxicol 42:104–111. https://doi.org/10.1080/01480545.2018.1523186

    Article  CAS  Google Scholar 

  24. Ramakrishnappa T, Yadav LSR, Pereira JR et al (2021) Resistivity of zirconium oxide nanoparticles synthesized by solution combustion method using rubber latex fuel. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.05.186

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rai A, Tripathi AM, Saha S et al (2020) Comparison of antimicrobial efficacy of four different plant extracts against cariogenic bacteria: an in vitro study. Int J Clin Pediatr Dent 13:361–367. https://doi.org/10.5005/jp-journals-10005-1796

    Article  PubMed  PubMed Central  Google Scholar 

  26. Article R (2019) A review on natural gums and their use as pharmaceutical excipients Srinivas Lankalapalli * and Deepthi Sandhala GITAM Institute of Pharmacy, GITAM Deemed to be University, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh. India. 10:5274–5283. https://doi.org/10.13040/IJPSR.0975-8232.10(12).5274-83

    Article  Google Scholar 

  27. Vemuri PK, Dronavalli L, Nayakudugari P et al (2019) Phytochemical analysis and biochemical characterization of terminalia chebula extracts for its medicinal use. Biomed Pharmacol J 12:1525–1529. https://doi.org/10.13005/bpj/1783

    Article  CAS  Google Scholar 

  28. Kumari S, Krishna MJ, Joshi AB et al (2017) A pharmacognostic, phytochemical and pharmacological review of Terminalia bellerica. J Pharmacogn Phytochem 6:368–376

    Google Scholar 

  29. Das G, Kim DY, Fan C et al (2020) Plants of the genus terminalia: an insight on its biological potentials, pre-clinical and clinical studies. Front Pharmacol 11:1–30. https://doi.org/10.3389/fphar.2020.561248

    Article  CAS  Google Scholar 

  30. Mohanta YK, Biswas K, Jena SK et al (2020) Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the indian medicinal plants. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.01143

    Article  Google Scholar 

  31. Sun Q, Zhang L, Bai R et al (2021) Recent progress in antimicrobial strategies for resin-based restoratives. Polymers (Basel). https://doi.org/10.3390/polym13101590

    Article  PubMed Central  Google Scholar 

  32. Das P, Ghosh S, Nayak B (2021) Phyto-fabricated nanoparticles and their anti-bio fi lm activity: progress and current status. Front Nanotechnol 3:1–30. https://doi.org/10.3389/fnano.2021.739286

    Article  CAS  Google Scholar 

  33. Patel H, Kalaria R, Leva R, Patel RM (2016) Isolation and identification of endophytes from Terminalia Species. Adv Life Sci 5:3640–3648

    Google Scholar 

  34. Kabeerdass N, Al OA, Rajendran M et al (2021) Bacillus-mediated silver nanoparticle synthesis and its antagonistic activity against bacterial and fungal pathogens. Antibiotics 10:1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abinaya M, Vaseeharan B, Divya M et al (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103. https://doi.org/10.1016/J.JTEMB.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  36. Yusof HM, Rahman NA, Mohamad R, Zaidan UH (2020) Microbial mediated synthesis of silver nanoparticles by lactobacillus plantarum ta4 and its antibacterial and antioxidant activity. Appl Sci 10:1–18. https://doi.org/10.3390/app10196973

    Article  CAS  Google Scholar 

  37. Golnaraghi Ghomi AR, Mohammadi-Khanaposhti M, Vahidi H et al (2019) Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: a novel biological approach to nanoparticle synthesis. Iran J Pharm Res 18:2101–2110. https://doi.org/10.22037/ijpr.2019.112382.13722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong H, Xie Z, Wei H et al (2019) Antibacterial and antibiofilm activity of Temporin-GHc and Temporin-GHd against cariogenic bacteria. Streptococcus mutans Front Microbiol. https://doi.org/10.3389/fmicb.2019.02854

    Article  PubMed  Google Scholar 

  39. Tang B, Gong T, Cui Y et al (2020) Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int J Oral Sci 12:1–10. https://doi.org/10.1038/s41368-020-0079-5

    Article  CAS  Google Scholar 

  40. Yi L, Jin M, Li J et al (2020) Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 104:8649–8660. https://doi.org/10.1007/s00253-020-10873-9

    Article  CAS  PubMed  Google Scholar 

  41. Beketova A, Theocharidou A, Tsamesidis I et al (2021) Sol–gel synthesis and characterization of ysz nanofillers for dental cements at different temperatures. Dent J 9:1–19. https://doi.org/10.3390/dj9110128

    Article  Google Scholar 

  42. Gad MM, Abualsaud R, Rahoma A et al (2018) Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine 13:283–292. https://doi.org/10.2147/IJN.S152571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pani SC, Aljammaz MT, Alrugi AM et al (2020) Color stability of glass ionomer cement after reinforced with two different nanoparticles. Int J Dent. https://doi.org/10.1155/2020/7808535

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ansarifard E, Zareshahrabadi Z, Sarafraz N, Zomorodian K (2021) Evaluation of antimicrobial and antibiofilm activities of copper oxide nanoparticles within soft denture liners against oral pathogens. Bioinorg Chem Appl. https://doi.org/10.1155/2021/9939275

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sidhu S, Nicholson J (2016) A review of glass-ionomer cements for clinical dentistry. J Funct Biomater 7:16. https://doi.org/10.3390/jfb7030016

    Article  CAS  PubMed Central  Google Scholar 

  46. Yang Y, Bao H, Chai Q et al (2019) Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection. Int J Nanomedicine 14:5175–5186. https://doi.org/10.2147/IJN.S197565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beltrami R, Colombo M, Rizzo K et al (2021) Cytotoxicity of different composite resins on human gingival fibroblast cell lines. Biomimetics. https://doi.org/10.3390/BIOMIMETICS6020026

    Article  PubMed  PubMed Central  Google Scholar 

  48. Balaji S (2022) Enhanced antibiofilm activity of endophytic bacteria mediated zirconium nanoparticles. Biointerface Res Appl Chem 12:74–82

    CAS  Google Scholar 

  49. Al-Zaqri N, Muthuvel A, Jothibas M et al (2021) Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities. Inorg Chem Commun 127:108507. https://doi.org/10.1016/j.inoche.2021.108507

    Article  CAS  Google Scholar 

  50. Kumaresan M, Vijai Anand K, Govindaraju K et al (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO 2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb Pathog 124:311–315. https://doi.org/10.1016/j.micpath.2018.08.060

    Article  CAS  PubMed  Google Scholar 

  51. Moradpoor H, Safaei M, Mozaffari HR et al (2021) An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 11:21189–21206. https://doi.org/10.1039/d0ra10789a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manal AA, Awatif AH, Khalid MOO et al (2014) Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. Int J Phys Sci 9:34–40. https://doi.org/10.5897/ijps2013.4080

    Article  Google Scholar 

  53. Sagadevan S, Podder J, Das I (2016) Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization. J Mater Sci Mater Electron 27:5622–5627. https://doi.org/10.1007/s10854-016-4469-6

    Article  CAS  Google Scholar 

  54. Balaji S, Mandal BK, Ranjan S et al (2017) Nano-zirconia – Evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol 170:125–133. https://doi.org/10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  55. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251. https://doi.org/10.1016/j.micpath.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  56. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305. https://doi.org/10.1039/b407904c

    Article  CAS  Google Scholar 

  57. Majedi A, Abbasi A, Davar F (2016) Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. J Sol-Gel Sci Technol 77:542–552. https://doi.org/10.1007/s10971-015-3881-3

    Article  CAS  Google Scholar 

  58. Panda B, Mohapatra P (2012) Phase transformation of ZrO 2 nanoparticles produced from zircon. Phase Transit. https://doi.org/10.1080/01411594.2011.619698

    Article  Google Scholar 

  59. Mangla O, Roy S (2019) Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions †. Multidiscip Digital Publ Inst Proc. https://doi.org/10.3390/IOCN

    Article  Google Scholar 

  60. Zhang N (2017) Antibacterial and protein-repellent dental composite for prevention of secondary caries. Dent Oral Craniofac Res. 3:1–2. https://doi.org/10.15761/DOCR.1000194

    Article  Google Scholar 

  61. Wijayanti RB, Rosmayanti I, Wahyudi K et al (2021) Preparation of magnesia partially stabilized zirconia nanomaterials from zirconium hydroxide and magnesium carbonate precursors using PEG as a template. Crystals. https://doi.org/10.3390/cryst11060635

    Article  Google Scholar 

  62. Lee J, Nho YH, Yun SK, Hwang YS (2017) Use of ethanol extracts of terminalia chebula to prevent periodontal disease induced by dental plaque bacteria. BMC Complement Altern Med 17:1–10. https://doi.org/10.1186/s12906-017-1619-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Savitha T, Shafna Asmy VS, Natarajan J, Sankaranarayanan A (2021) Insilico interaction profile of terminalia chebula phytocompounds with alpha haemolysin of multiple drug resistant uropathogenic escherichia coli. J Sci Res 65:166–172. https://doi.org/10.3738/jsr.2021.650121

    Article  Google Scholar 

  64. Das G, Park S, Choi J, Baek KH (2019) Anticandidal potential of endophytic bacteria isolated from dryopteris uniformis (Makino). Jundishapur J Microbiol 12:1–10. https://doi.org/10.5812/jjm.69878.Research

    Article  Google Scholar 

  65. Ramburrun P, Pringle NA, Dube A et al (2021) Recent advances in the development of antimicrobial and antifouling biocompatible materials for dental applications. Materials 14:1–32

    Article  Google Scholar 

  66. Mitwalli H, Alsahafi R, Balhaddad AA et al (2020) Emerging contact-killing antibacterial strategies for developing anti-biofilm dental polymeric restorative materials. Bioengineering 7:1–25. https://doi.org/10.3390/bioengineering7030083

    Article  CAS  Google Scholar 

  67. Shaalan OO, Abou-Auf E, Farid El Zoghby A (2018) Clinical evaluation of self-adhering flowable composite versus conventional flowable composite in conservative class I cavities: randomized controlled trial. J Conserv Dent 21:485–490. https://doi.org/10.4103/JCD.JCD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konar M, Nayak N, Priyadarsini S et al (2019) Antimicrobial activity of nanoparticle-based dental fillers on novel chromogenic bacteria Enterobacter ludwigii. Mater Res Express 6:085407. https://doi.org/10.1088/2053-1591/ab2262

    Article  CAS  Google Scholar 

  69. Wang J, Yin W, He X et al (2016) Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis. Sci Rep 6:1–9. https://doi.org/10.1038/srep35020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Vellore Institute of Technology, Vellore for providing “VIT SEED GRANT” for carrying out this research work. They thank Dr. B. Ragavendran (Kalvi Dental Clinic) who gifted the pathogens for this research work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors critically revised the manuscript and approved the final version of the manuscript to be submitted.

Corresponding author

Correspondence to Venkat Kumar Shanmugam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, S., Shanmugam, V.K. Comparative study of effective antibiofilm activity of beneficial microbes-mediated zirconia nanoparticles. Bioprocess Biosyst Eng 45, 1771–1780 (2022). https://doi.org/10.1007/s00449-022-02776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02776-y

Keywords

Navigation