Skip to main content
Log in

Biodiversity, isolation and genome analysis of sulfamethazine-degrading bacteria using high-throughput analysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sulfamethazine (SM2) is one of the sulfonamide antibiotics that is frequently detected in aquatic environment. Given the complex structure of SM2 and its potential threat to the environment, it is necessary to determine the degradation behavior of high-concentration SM2. The mechanisms of community structure and diversity of activated sludge were analyzed. A novel SM2-degrading strain YL1 was isolated which can degrade SM2 with high concentration of 100 mg L−1. Strain YL1 was identified as Paenarthrobacter ureafaciens and there was also a significant increase in the genus during acclimation. Additional SM2 metabolic mechanisms and genomic information of YL1 were analyzed for further research. The succession of the community structure also investigated the effect of SM2 on the activated sludge. This result not only advances the current understanding of microbial ecology in activated sludge, but also has practical implications for the design and operation of the environmental bioprocesses for treatment of antimicrobial-bearing waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albero B, Tadeo JL, Escario M, Miguel E, Perez RA (2018) Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci Total Environ 643:1562–1570. https://doi.org/10.1016/j.scitotenv.2018.06.314

    Article  CAS  PubMed  Google Scholar 

  2. Kurwadkar S, Struckhoff G, Pugh K, Singh O (2017) Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions. J Environ Sci (China) 53:217–223. https://doi.org/10.1016/j.jes.2016.04.019

    Article  Google Scholar 

  3. Chen J, Ying GG, Wei XD, Liu YS, Liu SS, Hu LX, He LY, Chen ZF, Chen FR, Yang YQ (2016) Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species. Sci Total Environ 571:974–982. https://doi.org/10.1016/j.scitotenv.2016.07.085

    Article  CAS  PubMed  Google Scholar 

  4. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States–I) groundwater. Sci Total Environ 402(2–3):192–200. https://doi.org/10.1016/j.scitotenv.2008.04.028

    Article  CAS  PubMed  Google Scholar 

  5. Bartelt-Hunt SL, Snow DD, Damon T, Shockley J, Hoagland K (2009) The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ Pollut 157(3):786–791. https://doi.org/10.1016/j.envpol.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  6. Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y (2012) Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 86(6):665–671. https://doi.org/10.1016/j.chemosphere.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  7. Wu R, Wu H, Jiang X, Shen J, Faheem M, Sun X, Li J, Han W, Wang L, Liu X (2017) The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater. Environ Sci Pollut Res Int 24(11):10570–10583. https://doi.org/10.1007/s11356-017-8641-1

    Article  CAS  PubMed  Google Scholar 

  8. Yin X, Qiang Z, Ben W, Pan X, Nie Y (2014) Biodegradation of sulfamethazine by activated sludge: lab-scale study. J Environ Eng 140(7):04014024. https://doi.org/10.1061/(asce)ee.1943-7870.0000850

    Article  Google Scholar 

  9. Wang J, Wang S (2018) Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol 12(8):3573–3582. https://doi.org/10.1007/s00253-018-8845-4

    Article  CAS  Google Scholar 

  10. Guo X, Pang W, Dou C, Yin D (2017) Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. Chemosphere 175:21–27. https://doi.org/10.1016/j.chemosphere.2017.01.134

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, Hu Y, Wang J (2018) Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J Environ Manage 217:240–246. https://doi.org/10.1016/j.jenvman.2018.03.096

    Article  CAS  PubMed  Google Scholar 

  12. Huang M, Tian S, Chen D, Zhang W, Wu J, Chen L (2012) Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3. J Environ Sci 24(9):1594–1599. https://doi.org/10.1016/s1001-0742(11)60973-x

    Article  CAS  Google Scholar 

  13. Lin B, Lyu J, Lyu XJ, Yu HQ, Hu Z, Lam JC, Lam PK (2015) Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge. J Hazard Mater 282:158–164. https://doi.org/10.1016/j.jhazmat.2014.06.080

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez-Rodriguez CE, Garcia-Galan MA, Blanquez P, Diaz-Cruz MS, Barcelo D, Caminal G, Vicent T (2012) Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. J Hazard Mater 213–214:347–354. https://doi.org/10.1016/j.jhazmat.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  15. Aregbe AY, Mu T, Sun H (2019) Effect of different pretreatment on the microbial diversity of fermented potato revealed by high-throughput sequencing. Food Chem 290:125–134. https://doi.org/10.1016/j.foodchem.2019.03.100

    Article  CAS  PubMed  Google Scholar 

  16. de Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AYM (2017) A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. Microbiome 5(1):68. https://doi.org/10.1186/s40168-017-0279-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nair D (2013) Whole-genome sequencing and infectious disease: a novel application of sequencing technology. Genet Test Mol Biomark 17(10):719–720. https://doi.org/10.1089/gtmb.2013.1549

    Article  Google Scholar 

  19. Janet T, King RD, Thomas A, Oliver F (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18(2):S241

    Google Scholar 

  20. Jiang B, Li A, Cui D, Cai R, Ma F, Wang Y (2014) Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biotechnol 98(10):4671–4681. https://doi.org/10.1007/s00253-013-5488-3

    Article  CAS  PubMed  Google Scholar 

  21. Pan L-j, Tang X-d, Li C-x, Yu G-w, Wang Y (2017) Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World J Microbiol Biotechnol 33(5):85. https://doi.org/10.1007/s11274-017-2245-2

    Article  CAS  PubMed  Google Scholar 

  22. Wall SK, Zhang J, Rostagno MH, Ebner PD (2009) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol 76(1):48–53. https://doi.org/10.1128/aem.00785-09

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao HM, Hu RW, Chen XX, Chen XB, Lu H, Li YW, Li H, Mo CH, Cai QY, Wong MH (2018) Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil. Sci Total Environ 640–641:1121–1131. https://doi.org/10.1016/j.scitotenv.2018.05.334

    Article  CAS  PubMed  Google Scholar 

  24. Li A, Cai R, Cui D, Qiu T, Pang C, Yang J, Ma F, Ren N (2013) Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. J Environ Sci 25(11):2281–2290. https://doi.org/10.1016/s1001-0742(12)60293-9

    Article  CAS  Google Scholar 

  25. Zhao HM, Du H, Lin J, Chen XB, Li YW, Li H, Cai QY, Mo CH, Qin HM, Wong MH (2016) Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ 562:170–178. https://doi.org/10.1016/j.scitotenv.2016.03.171

    Article  CAS  PubMed  Google Scholar 

  26. Zhao JK, Li XM, Ai GM, Deng Y, Liu SJ, Jiang CY (2016) Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil. J Hazard Mater 318:90–98. https://doi.org/10.1016/j.jhazmat.2016.06.055

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Li A, Wang Q, Cui D, Cui C, Ma F (2018) Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater. Biodegradation 29(3):285–299. https://doi.org/10.1007/s10532-018-9829-x

    Article  CAS  PubMed  Google Scholar 

  28. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12):e27310. https://doi.org/10.1371/journal.pone.0027310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alikhan NF, Petty NK, Zakour NLB, Beatson SAA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. Bmc Genom 12:402

    Article  CAS  Google Scholar 

  31. Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R (2014) Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8(2):398–408

    Article  CAS  PubMed  Google Scholar 

  32. Deng Y, Wang Y, Mao Y, Zhang T (2018) Partnership of Arthrobacter and Pimelobacter in aerobic degradation of sulfadiazine revealed by metagenomics analysis and isolation. Environ Sci Technol 52(5):2963–2972. https://doi.org/10.1021/acs.est.7b05913

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK (2017) Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. Water Res 125:227–236. https://doi.org/10.1016/j.watres.2017.08.041

    Article  CAS  PubMed  Google Scholar 

  34. Deng Y, Li B, Zhang T (2018) Bacteria that make a meal of sulfonamide antibiotics: blind spots and emerging opportunities. Environ Sci Technol 52(7):3854–3868. https://doi.org/10.1021/acs.est.7b06026

    Article  CAS  PubMed  Google Scholar 

  35. Coyne S, Courvalin P, Perichon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55(3):947–953. https://doi.org/10.1128/AAC.01388-10

    Article  CAS  PubMed  Google Scholar 

  36. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43(2):415–417. https://doi.org/10.1128/aac.43.2.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dalluge JJ, Smith S, Sanchez-Riera F, McGuire C, Hobson R (2004) Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1043(1):3–7. https://doi.org/10.1016/j.chroma.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  38. Cao L, Zhang J, Zhao R, Deng Y, Liu J, Fu W, Lei Y, Zhang T, Li X, Li B (2019) Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. Environ Int 131:104961. https://doi.org/10.1016/j.envint.2019.104961

    Article  CAS  PubMed  Google Scholar 

  39. Busse HJ (2016) Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 66(1):9–37. https://doi.org/10.1099/ijsem.0.000702

    Article  CAS  PubMed  Google Scholar 

  40. Strong L, Rosendahl C, Johnson G, Sadowsky M, Wackett L (2003) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds, vol 68. Doi: 10.1128/AEM.68.12.5973-5980.2002

  41. Sajjaphan K, Shapir N, Wackett L, Palmer M, Blackmon B, Tomkins J, Sadowsky M (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli, vol 70. Doi: 10.1128/AEM.70.7.4402-4407.2004

  42. Cai B, Han Y, Liu B, Ren Y, Jiang S (2010) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36(5):272–276. https://doi.org/10.1046/j.1472-765X.2003.01307.x

    Article  Google Scholar 

  43. M. Elväng A, Westerberg K, Jernberg C, Jansson J (2001) Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. 3:32–42. Doi: 10.1046/j.1462-2920.2001.00156.x

  44. Kyu Kim K, Chul Lee K, Oh H-M, Jeong Kim M, Kyung Eom M, Lee J-S (2008) Arthrobacter defluvii sp. nov., 4-chlorophenol-degrading bacteria isolated from sewage. Int J Syst Evol Microbiol 58(58):1916–1921. https://doi.org/10.1099/ijs.0.65550-0

    Article  CAS  Google Scholar 

  45. Isabel M, Ferreira M, Iida T, Hasan SA, Nakamura K, Fraaije M, Janssen BD, Kudo T (2009) Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Environ Microbiol 75(24):7767–7773. https://doi.org/10.1128/AEM.00171-09

    Article  CAS  Google Scholar 

  46. Perry LL, Zylstra GJ (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189(21):7563–7572. https://doi.org/10.1128/JB.01849-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dore SY, Clancy QE, Rylee SM, Kulpa CF (2003) Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63(2):194–199. https://doi.org/10.1007/s00253-003-1378-4

    Article  CAS  PubMed  Google Scholar 

  48. Vandera E, Kavakiotis K, Kallimanis A, Kyrpides CN, Drainas C, Koukkou AI (2011) Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. 78:621–627. Doi: 10.1128/AEM.07137-11

  49. Husserl J, Hughes BJ, Spain J (2012) Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 78(10):3649–3655. https://doi.org/10.1128/AEM.00006-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohd-Zain Z, Kamsani NK, Ahmad N (2013) Molecular insights of co-trimoxazole resistance genes in Haemophilus influenzae isolated in Malaysia. Trop Biomed 30(4):584–590. https://doi.org/10.1179/2047772413Z.000000000180

    Article  CAS  PubMed  Google Scholar 

  51. Venantam G, Guay G, Austria NE, Doktor SZ, Nichols BP (1998) Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother 42(1):88–93. https://doi.org/10.1128/AAC.42.1.88

    Article  Google Scholar 

  52. Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, Strnad H, Vlček Č, Adaixo R, Hammes F, Shahgaldian P, Schäffer A, Kohler H-PE, Corvini PFX (2017) FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci Rep 7(1):15783. https://doi.org/10.1038/s41598-017-16132-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng Y, Mao Y, Li B, Yang C, Zhang T (2016) Aerobic degradation of sulfadiazine by Arthrobacter spp.: kinetics, pathways and genomic characterization. Environ Sci Technol 50(17):9566–9575. https://doi.org/10.1021/acs.est.6b02231

    Article  CAS  PubMed  Google Scholar 

  54. Hirth N, Topp E, Dörfler U, Stupperich E, Munch JC, Schroll R (2016) An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric 3(1):29. https://doi.org/10.1186/s40538-016-0080-6

    Article  CAS  Google Scholar 

  55. Martin-Laurent F, Marti R, Waglechner N, Wright GD, Topp E (2014) Draft genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain C448. Genom Announc. https://doi.org/10.1128/genomeA.01113-13

    Article  Google Scholar 

  56. Chen J, Xie S (2018) Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci Total Environ 640–641:1465–1477. https://doi.org/10.1016/j.scitotenv.2018.06.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Yuanyuan Qu (Dalian University of Technology, Dalian, China) for her thoughtful review of this manuscript. This work was financially funded by the National Natural Science Foundation of China (No. 51478140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Ma.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Wang, Y., Su, X. et al. Biodiversity, isolation and genome analysis of sulfamethazine-degrading bacteria using high-throughput analysis. Bioprocess Biosyst Eng 43, 1521–1531 (2020). https://doi.org/10.1007/s00449-020-02345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02345-1

Keywords

Navigation