Skip to main content
Log in

Comparing impacts of physicochemical properties and hydrolytic inhibitors on enzymatic hydrolysis of sugarcane bagasse

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An autohydrolysis pretreatment with different conditions was applied to sugarcane bagasse to compare the impacts of the physicochemical properties and hydrolytic inhibitors on its enzymatic hydrolysis. The results indicate that the autohydrolysis conditions significantly affected the physicochemical properties and inhibitors, which further affected the enzymatic hydrolysis. The inhibitor amount, pore size, and crystallinity degree increased with increasing autohydrolysis severity. Furthermore, the enzymatic hydrolysis was enhanced with increasing severity owing to the removal of hemicellulose and lignin. The physicochemical obstruction impeded the enzymatic hydrolysis more than the inhibitors. The multivariate correlated component regression analysis enabled an evaluation of the correlations between the physicochemical properties (and inhibitors) and enzymatic hydrolysis for the first time. According to the results, an autohydrolysis with a severity of 4.01 is an ideal pretreatment for sugarcane bagasse for sugar production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen SA, Clark W, McCaffery JM et al (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2–12

    PubMed  PubMed Central  Google Scholar 

  2. Isis Amores IBPM, Sáez GMMB (2013) Ethanol production from sugarcane bagasse pretreated by steam explosion. Electron J Energy Environ 1:25–36

    Google Scholar 

  3. Ko JK, Kim Y, Ximenes E (2015) Ladisch MR et al Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112:252–262

    CAS  PubMed  Google Scholar 

  4. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    CAS  PubMed  Google Scholar 

  5. Canilha L, Chandel AK, Dos Santos Suzane, Milessi T et al (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15

    Google Scholar 

  6. Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as pretreatment for conversion to ethanol. Biomass Bioenerg 3:277–287

    Google Scholar 

  7. Saha BC, Cotta MA (2011) Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5. Appl Microbiol Biotechnol 90:477–487

    CAS  PubMed  Google Scholar 

  8. Iroba KL, Tabil LG, Dumonceaux T et al (2013) Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosyst Eng 116:385–398

    Google Scholar 

  9. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    CAS  PubMed  Google Scholar 

  10. Shevchenko SM, Chang K, Robinson J et al (2000) Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol 72:207–211

    CAS  Google Scholar 

  11. Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod Biorefining 5(10):634–647

    Google Scholar 

  12. Martin C, Galbe M, Nilvebrant NO et al (2002) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotechnol 98–100:699–716

    PubMed  Google Scholar 

  13. Vallejos ME, Felissia FE, Kruyeniski J et al (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crops Prod 67:1–6

    CAS  Google Scholar 

  14. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    CAS  PubMed  Google Scholar 

  15. Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A et al (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102:10915–10921

    CAS  PubMed  Google Scholar 

  16. Zhou Z, Cheng Y, Zhang W et al (2016) Characterization of lignins from sugarcane bagasse pretreated with green liquor combined with ethanol and hydrogen peroxide. BioResources 11:3191–3203

    CAS  Google Scholar 

  17. Hashmi M, Sun Q, Tao J et al (2017) Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 224:714–720

    CAS  PubMed  Google Scholar 

  18. Lee JM, Shi J, Venditti RA et al (2009) Autohydrolysis pretreatment of coastal bermuda grass for increased enzyme hydrolysis. Bioresour Technol 100:6434–6441

    CAS  PubMed  Google Scholar 

  19. Ko JK, Um Y, Park Y et al (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol 99:4201–4212

    CAS  PubMed  Google Scholar 

  20. Hodge DB, Karim MN, Schell DJ et al (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Biores Technol 99:8940–8948

    CAS  Google Scholar 

  21. Ximenes E, Kim Y, Mosier N et al (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    CAS  Google Scholar 

  22. Kim Y, Ximenes E, Mosier NS et al (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415

    CAS  PubMed  Google Scholar 

  23. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    CAS  PubMed  Google Scholar 

  24. Michelin M, Ximenes E, de Moraes MDLT et al (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278

    CAS  PubMed  Google Scholar 

  25. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  26. Min D, Xu R, Hou Z et al (2015) Minimizing inhibitors during pretreatment while maximizing sugar production in enzymatic hydrolysis through a two-stage hydrothermal pretreatment. Cellulose 22:1253–1261

    CAS  Google Scholar 

  27. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, National Renewable Laboratory, NREL/TP-510-42618, USA

  28. Nitsos CK, Choli-Papadopoulou T, Matis KA et al (2016) Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng 4:4529–4544

    CAS  Google Scholar 

  29. Min D, Wei L, Zhao T et al (2018) Combination of hydrothermal pretreatment and sodium hydroxide post-treatment applied on wheat straw for enhancing its enzymatic hydrolysis. Cellulose 25:1197–1206

    CAS  Google Scholar 

  30. Phillips RB, Jameel H, Chang HM (2013) Integration of pulp and paper technology with bioethanol production. Biotechnol Biofuels 6:13–13

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Michelin M, Ximenes E, De Moraes Teixeira, Polizeli MDL et al (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278

    CAS  PubMed  Google Scholar 

  32. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    CAS  PubMed  Google Scholar 

  33. Hu F, Ragauskas A (2014) Suppression of pseudo-lignin formation under dilute acid pretreatment conditions. RSC Adv 4:4317–4323

    CAS  Google Scholar 

  34. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefining 6:465–482

    CAS  Google Scholar 

  35. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202

    CAS  Google Scholar 

  36. Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    PubMed  PubMed Central  Google Scholar 

  37. Batalha LAR, Han Q, Jameel H et al (2015) Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Biores Technol 180:97–105

    CAS  Google Scholar 

  38. Ju X, Grego C, Zhang X (2013) Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Biores Technol 144:232–239

    CAS  Google Scholar 

  39. Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    CAS  PubMed  Google Scholar 

  40. Kumar L, Arantes V, Chandra R et al (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208

    CAS  PubMed  Google Scholar 

  41. Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145

    CAS  PubMed  Google Scholar 

  42. Zheng Y, Zhang S, Miao S et al (2013) Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. J Biotechnol 166:135–143

    CAS  PubMed  Google Scholar 

  43. Ding D, Li P, Zhang X (2019) Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis. Bioresour Technol 273:231–236

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Innovation Project of Guangxi Graduate Education (YCBZ2019017), Guangxi Natural Science Foundation (2018JJA130224), and Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control Foundation (ZR201805-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douyong Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Guo, C., Luo, B. et al. Comparing impacts of physicochemical properties and hydrolytic inhibitors on enzymatic hydrolysis of sugarcane bagasse. Bioprocess Biosyst Eng 43, 111–122 (2020). https://doi.org/10.1007/s00449-019-02209-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02209-3

Keywords

Navigation