Skip to main content

Advertisement

Log in

Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L−1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L−1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol/V solution), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L−1 h−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

X v :

Cell alive concentration (g L−1)

X d :

Cell dead concentration (g L−1)

X T :

Cell total concentration (g L−1)

S :

Substrate concentration (g L−1)

S 0 :

Initial substrate concentration (g L−1)

P :

Product concentration (g L−1)

P max :

Product concentration when cell growth ceases (g L−1)

t :

Time (h)

y i :

Experimental values

y pi :

Calculated values

n :

Number of experimental points

n v :

Number of variables estimated

k d :

Specific rate cell death (h−1)

K s :

Substrate saturation constant (g L−1)

K i :

Substrate inhibition constant (g L−1)

m S :

Specific rate cell maintenance (h−1)

p :

Number of model parameters

\(F_{\text{tab}}\) :

Tabled value for the Fisher Test F

Y P/X :

Yield of product based on cell growth (g g−1)

Y X/S :

Yield of cell growth based on substrate consumption (g g−1)

Y P/S :

Yield of product based on substrate consumption (g g−1)

\({\mathcal{E}}^{ \exp }\) :

Apparent experimental error

µ max :

Maximum specific growth rate of cells (h−1)

µ :

Specific growth rate of cells (g L−1 h−1)

References

  1. Deenanath ED, Rumbold K, Iyuke S (2013) The production of bioethanol from cashew apple juice by batch fermentation using Saccharomyces cerevisiae Y2084 and Vin13. ISRN Renew Energy 2013:1–11. doi:10.1155/2013/107851

    Article  Google Scholar 

  2. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282. doi:10.1016/j.apenergy.2009.03.015

    Article  CAS  Google Scholar 

  3. International Energy Agency (2013) Medium-term renewable energy market report 2013. https://www.iea.org. Accessed 24 May 2017

  4. Atala DIP, Costa AC, Maciel R, Maugeri F (2001) Kinetics of ethanol fermentation with high biomass concentration considering the effect of temperature. Appl Biochem Biotechnol 91–93:353–366. doi:10.1385/ABAB:91-93:1-9:353

    Article  Google Scholar 

  5. Goldemberg J, Coelho ST, Nastari PM, Lucon O (2004) Ethanol learning curve—the Brazilian experience. Biomass Bioenergy 26:301–304. doi:10.1016/S0961-9534(03)00125-9

    Article  Google Scholar 

  6. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi:10.1016/j.tibtech.2006.10.004

    Article  Google Scholar 

  7. Pinheiro ADT, Rocha MVP, Macedo GR, Gonçalves LRB (2008) Evaluation of cashew apple juice for the production of fuel ethanol. Appl Biochem Biotechnol 148:227–234. doi:10.1007/s12010-007-8118-7

    Article  CAS  Google Scholar 

  8. Rocha MVP, Rodrigues THS, de Macedo GR, Gonçalves LRB (2009) Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Appl Biochem Biotechnol 155:407–417. doi:10.1007/s12010-008-8432-8

    Article  CAS  Google Scholar 

  9. Anderson ST (2012) The demand for ethanol as a gasoline substitute. J Environ Econ Manag 63:151–168. doi:10.1016/j.jeem.2011.08.002

    Article  Google Scholar 

  10. Lima AM De (2011) Estudos recentes e perspectivas da viabilidade técnico-econômica da produção de etanol lignocelulósico, Embrapa. https://www.embrapa.br. Accessed 24 May 2017

  11. Milanez A, Nyko D, Garcia J, Reis BS Dos (2012) O déficit de produção de etanol no Brasil entre 2012 e 2015: determinantes, consequências e sugestões de política, BNDES. http://www.bndes.gov.br. Accessed 24 May 2017

  12. Adece (2013) Perfil Da Produção De Frutas Brasil Ceará 2013. http://www.adece.ce.gov.br. Accessed 24 May 2017

  13. Lowor ST, Agyente-Ba CK (2009) Mineral and proximate composition of cashew apple (Anarcardium occidentale L.) juice from Northern Savannah, forest and coastal savannah regions in Ghana. Am J Food Technol 4:154–161. doi:10.3923/ajft.2009.154.161

    Article  CAS  Google Scholar 

  14. Maruthai K, Thangavelu V, Kanagasabai M (2012) Statistical screening of medium components on ethanol production from cashew apple juice using Saccharomyces Diasticus. Int J Chem Biol Eng 6:108–111

    CAS  Google Scholar 

  15. Honorato TL, Rabelo MC, Gonçalves LRB et al (2007) Fermentation of cashew apple juice to produce high added value products. World J Microbiol Biotechnol 23:1409–1415. doi:10.1007/s11274-007-9381-z

    Article  CAS  Google Scholar 

  16. Luz DA, Rodrigues AKO, Silva FRC et al (2008) Adsorptive separation of fructose and glucose from an agroindustrial waste of cashew industry. Bioresour Technol 99:2455–2465. doi:10.1016/j.biortech.2007.04.063

    Article  CAS  Google Scholar 

  17. Rocha MVP, Oliveira AHS, Souza MCM, Gonçalves LRB (2006) Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World J Microbiol Biotechnol 22:1295–1299. doi:10.1007/s11274-006-9175-8

    Article  CAS  Google Scholar 

  18. Silveira MS, Fontes CPML, Guilherme AA et al (2010) Cashew apple juice as substrate for lactic acid production. Food Bioprocess Technol 5:947–953. doi:10.1007/s11947-010-0382-9

    Article  Google Scholar 

  19. Birol G, Doruker P, Kirdar B et al (1998) Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae. Process Biochem 33:763–771. doi:10.1016/S0032-9592(98)00047-8

    Article  CAS  Google Scholar 

  20. Tofalo R, Perpetuini G, Di Gianvito P et al (2014) Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains. Int J Food Microbiol 191:45–52. doi:10.1016/j.ijfoodmicro.2014.08.028

    Article  CAS  Google Scholar 

  21. Santos LD, Del M, Sousa B et al (2015) Continuous ethanol fermentation in tower reactors with cell recycling using flocculent Saccharomyces cerevisiae. Process Biochem. doi:10.1016/j.procbio.2015.07.020

    Google Scholar 

  22. Domingues L, Vicente AA, Lima N, Teixeira JA (2000) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305. doi:10.1007/BF02942185

    Article  CAS  Google Scholar 

  23. Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931–945. doi:10.1007/s00253-009-2381-1

    Article  CAS  Google Scholar 

  24. Pereira ALF, Rodrigues S (2012) Fermentation and cashew apple juice. In: Hui YH, Evranuz O (eds) Handbook of plant-based fermented food beverage technology, 2nd edn. CRC Press, Florida

  25. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  26. Cleran Y, Thibault J, Cheruy A, Corrieu G (1991) Comparison of prediction performances between models obtained by the group method of data handling and neural networks for the alcoholic fermentation rate in enology. J Ferment Bioeng 71:356–362. doi:10.1016/0922-338X(91)90350-P

    Article  CAS  Google Scholar 

  27. Chen M, Wang F (2010) Optimal trade-off design of integrated fermentation processes for ethanol production using genetically engineered yeast. Chem Eng J 158:271–280. doi:10.1016/j.cej.2010.01.045

    Article  CAS  Google Scholar 

  28. Monod J (1950) Ann Inst Pasteur 79:390

    CAS  Google Scholar 

  29. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723. doi:10.1002/bit.260100602

    Article  CAS  Google Scholar 

  30. Levenspiel O (1980) The monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687. doi:10.1002/bit.260220810

    Article  CAS  Google Scholar 

  31. Ghose TK, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolisate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol Bioeng 21:1401–1420

    Article  CAS  Google Scholar 

  32. Rivera EAC (2006) Otimização de bioprocessos: avaliação de desempenho das abordagens determinística e por algoritmos genéticos. Tese (Doutorado em Engenharia Química) - Faculdade de Engenharia Química. Universidade Estadual de Campinas, Campinas - SP, 2006. http://www.bibliotecadigital.unicamp.br. Accessed 24 May 2017

  33. Pacheco AM, Gondim DR, Gonçalves LRB (2010) Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl Biochem Biotechnol 161:209–217. doi:10.1007/s12010-009-8781-y

    Article  CAS  Google Scholar 

  34. Bonomi A, Schimidell W (2001) Modelagem matemática e simulação de processos fermentativos. Edgard Blucher, São Paulo

    Google Scholar 

  35. Larsen J, Øtergaard Petersen M, Thirup L et al (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772. doi:10.1002/ceat.200800048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian research-funding agencies BNB, CNPq FUNCAP and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Valderez Ponte Rocha or Luciana Rocha B. Gonçalves.

Ethics declarations

Conflict of interest

The authors declare they do not have conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, Á.D.T., da Silva Pereira, A., Barros, E.M. et al. Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature. Bioprocess Biosyst Eng 40, 1221–1235 (2017). https://doi.org/10.1007/s00449-017-1782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1782-2

Keywords

Navigation