Skip to main content
Log in

Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite

  • Short Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, the biosynthesis of γ-decalactone (GDL) was successfully conducted in an ionic liquid (IL)-containing cosolvent system using immobilized cells of Yarrowia lipolytica G3-3.21 on attapulgite (ATG). We found the immobilized Y. lipolytica G3-3.21 cells in N-butyl-pyridinium tetrafluoroborate ([BPy]BF4) solution gave the highest activity of C16-Acyl-CoA oxidase and the maximum yield of GDL. The optimum immobilization conditions for the highest yield of GDL were 20 g/L of ATG, 1.5 % of CaCl2 and 2 % of sodium alginate (NaAlg). The optimal [BPy]BF4 content, buffer pH, reaction temperature, shaking speed, castor oil and glucose contents were 7.5 %, 26 °C, 150 rpm, 100 g/L and 10 %, respectively. Under the optimized conditions, the GDL yield was up to 8.05 g/L. After ten times of reuse, the GDL yield was 7.51 g/L, corresponding to 93.3 % of that obtained in the first batch, suggesting a good reusability and potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Iacazio G, Martini D, Faure B, N’Guyen M (2002) Isolation and characterisation of 8-hydroxy-3Z, 5Z-tetradecadienoic acid, a putative intermediate in Pichia guilliermondii γ-decalactone biosynthesis from ricinoleic acid. FEMS Microbiol Lett 209:57–62

    Article  CAS  Google Scholar 

  2. Gomes N, Teixeira JA, Belo I (2012) Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett 34:649–654

    Article  CAS  Google Scholar 

  3. Pagot Y, Endrizzi A, Nicaud JM, Berlin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve γ-decalactone production yields. Lett Appl Microbiol 25:113–116

    Article  CAS  Google Scholar 

  4. Zhao Y, Mu X, Xu Y (2014) Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling. Chem Pap 68:1030–1040

    CAS  Google Scholar 

  5. Alchihab M, Destain J, Aguedo M, Wathelet JP, Thonart P (2010) The utilization of gum tragacanth to improve the growth of Rhodotorula aurantiaca and the production of γ-decalactone in large scale. Appl Biochem Biotechnol 162:233–241

    Article  CAS  Google Scholar 

  6. He DM, Kaleem I, Qin S, Dai D, Liu G (2010) Biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide catalyzed by β-d-glucuronidase with enhanced bond selectivity in an ionic liquid/buffer biphasic system. Process Biochem 45:1916–1922

    Article  CAS  Google Scholar 

  7. Li J, Jiang Z, Wu H, Long L, Jiang Y, Zhang L (2009) Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3-alginate composite gel. Compos Sci Technol 69:539–544

    Article  CAS  Google Scholar 

  8. Orçaire O, Buisson P, Pierre AC (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B Enzym 42:106–113

    Article  Google Scholar 

  9. Macario A, Moliner M, Corma A, Giordano G (2009) Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic-inorganic system. Microporous Mesoporous Mater 118:334–340

    Article  CAS  Google Scholar 

  10. You Q, Yin X, Zhao Y, Zhang Y (2013) Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresour Technol 148:202–207

    Article  CAS  Google Scholar 

  11. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Tech 37:19–28

    Article  CAS  Google Scholar 

  12. van Rantwijk F, Lau MR, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138

    Article  Google Scholar 

  13. Lou W, Zong M, Smith TJ (2006) Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chem 8:147–155

    Article  CAS  Google Scholar 

  14. Xiao Z, Du P, Lou W, Wu H, Zong M (2012) Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC M209061. Chem Eng Sci 84:695–705

    Article  CAS  Google Scholar 

  15. Li J, Wang P, Jin H, Jia S (2015) Design and application of a novel ionic liquid with the property of strengthening coenzyme regeneration for whole-cell bioreduction in an ionic liquid-distilled water medium. Bioresour Technol 175:42–50

    Article  CAS  Google Scholar 

  16. Fraser JE, Bickerstaff GF (1997) Entrapment in calcium alginate, Immobilization of Enzymes and Cells. Springer, New York, pp 61–66

    Google Scholar 

  17. Groguenin A, Waché Y, Garcia EE, Aguedo M, Husson F, Le Dall MT, Nicaud JM, Belin JM (2004) Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. J Mol Catal B Enzym 28:75–79

    Article  CAS  Google Scholar 

  18. Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzym Microb Technol 46:51–55

    Article  CAS  Google Scholar 

  19. Pagot Y, Endrizzi A, Nicaud JM, Belin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve γ-decalactone production yields. Lett Appl Microbiol 25:113–116

    Article  CAS  Google Scholar 

  20. Shimizu S, Tani Y, Yamada H, Tabata M, Murachi T (1980) Enzymatic determination of serum-free fatty acids: a colorimetric method. Anal Biochem 107:193–198

    Article  CAS  Google Scholar 

  21. Osumi T, Hashimoto T (1978) Acyl-CoA oxidase of rat liver A new enzyme for fatty acid oxidation. Biochem Biophys Res Commun 83:479–485

    Article  CAS  Google Scholar 

  22. Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  Google Scholar 

  23. Wang X, Yue D, Zong M, Lou W (2013) Use of ionic liquid to significantly improve asymmetric reduction of ethyl acetoacetate catalyzed by Acetobacter sp. CCTCC M209061 cells. Ind Eng Chem Res 52:12550–12558

    Article  CAS  Google Scholar 

  24. Waché Y, Aguedo M, Choquet A, Gatfield L, Nicaud JM, Belin JM (2001) Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol 67:5700–5704

    Article  Google Scholar 

  25. Waché Y, Laroche C, Bergmark K, Møller-Andersen C, Aguedo M, Le Dall M-T, Wang H, Nicaud J-M, Belin J-M (2000) Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl Environ Microbiol 66:1233–1236

    Article  Google Scholar 

  26. Hernández-Fernández FJ, de los Ríos AP, Rubio M, Gómez D, Víllora G (2007) Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J Chem Technol Biotechnol 82:882–887

    Article  Google Scholar 

  27. Xiao Z, Zong M, Lou W (2009) Highly enantioselective reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol using a novel strain Acetobacter sp. CCTCC M209061. Bioresour Technol 100:5560–5565

    Article  CAS  Google Scholar 

  28. Kaleem I, Shen H, Lv B, Wei B, Rasool A, Li C (2014) Efficient biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) in water-miscible ionic liquid by immobilized whole cells of Penicillium purpurogenum Li-3 in alginate gel. Chem Eng Sci 106:136–143

    Article  CAS  Google Scholar 

  29. Wang W, Zong M, Lou W (2009) Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2. 2241 cells. J Mol Catal B Enzym 56:70–76

    Article  CAS  Google Scholar 

  30. Paludo N, Alves JS, Altmann C, Ayub MA, Fernandez-Lafuente R, Rodrigues RC (2014) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason Sonochem 49:89–94

    Google Scholar 

  31. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125:4125–4131

    Article  CAS  Google Scholar 

  32. Manolov R (1992) Influence of agitation rate on growth and ribonuclease production by free and immobilized Aspergillus clavatus cells. Appl Biochem Biotechnol 33:157–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Industrial Technology Program of Huaian, People’s Republic of China (HAG09040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, Y. & Jiang, C. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite. Bioprocess Biosyst Eng 38, 2045–2052 (2015). https://doi.org/10.1007/s00449-015-1431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1431-6

Keywords

Navigation