Skip to main content

Advertisement

Log in

Neural network modeling of the light profile in a novel photobioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) was implemented to model the light profile pattern inside a photobioreactor (PBR) that uses a toroidal light arrangement. The PBR uses Tequila vinasses as culture medium and purple non-sulfur bacteria Rhodopseudomonas palustris as biocatalyzer. The performance of the ANN was tested for a number of conditions and compared to those obtained by using deterministic models. Both ANN and deterministic models were validated experimentally. In all cases, at low biomass concentration, model predictions yielded determination coefficients greater than 0.9. Nevertheless, ANN yielded the more accurate predictions of the light pattern, at both low and high biomass concentration, when the bioreactor radius, the depth, the rotational speed of the stirrer and the biomass concentration were incorporated in the ANN structure. In comparison, most of the deterministic models failed to correlate the empirical data at high biomass concentration. These results show the usefulness of ANNs in the modeling of the light profile pattern in photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. doi:10.1007/s002530100702

    Article  CAS  Google Scholar 

  2. Evers EG (1991) A model for light-limited continuous cultures: growth, shading, and maintenance. Biotechnol Bioeng 38:254–259

    Article  CAS  Google Scholar 

  3. Katsuda T, Arimoto T, Igarashi K, Azuma M, Kato J, Takakuwa S, Ooshima H (2000) Light intensity distribution in the illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochem Eng J 5:157–164

    Article  CAS  Google Scholar 

  4. Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    Article  CAS  Google Scholar 

  5. Aiba S (1982) Growth kinetics of photosynthetic microorganisms. In: Fiechter A (ed) Advances in biochemical engineering. Springer, Berlin

    Google Scholar 

  6. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177. doi:10.1002/elsc.200900003

    Article  CAS  Google Scholar 

  7. Lee CG (1999) Calculation of light penetration depth in photobioreactors. Biotechnol Bioprocess Eng 4:78–81

    Article  CAS  Google Scholar 

  8. Luo H-P, Al-Dahhan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85:382–393. doi:10.1002/bit.10831

    Article  CAS  Google Scholar 

  9. Perner-Nochta I, Lucumi A, Posten C (2007) Photoautotrophic cell and tissue culture in a tubular photobioreactor. Eng Life Sci 7:127–135. doi:10.1002/elsc.200620178

    Article  CAS  Google Scholar 

  10. Acién-Fernández FG, García-Camacho F, Sánchez-Pérez JA, Fernández-Sevilla JM, Molina-Grima E (1997) A Model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701–714

    Article  Google Scholar 

  11. Acién-Fernández FG, García-Camacho F, Sánchez-Pérez JA, Fernández-Sevilla JM, Molina-Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:606–616

    Google Scholar 

  12. García-Camacho F, Contreras-Gómez A, Acién-Fernández FG, Fernández-Sevilla J, Molina-Grima E (1999) Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzyme Microb Technol 24:164–172

    Article  Google Scholar 

  13. Huang Q, Yao L, Liu T, Yang J (2012) Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 84:718–726. doi:10.1016/j.ces.2012.09.017

    Article  CAS  Google Scholar 

  14. Franco-Lara E, Havel J, Peterat F, Weuster-Botz D (2006) Model-supported optimization of phototrophic growth in a stirred-tank photobioreactor. Biotechnol Bioeng 95:1177–1187. doi:10.1002/bit.21086

    Article  CAS  Google Scholar 

  15. Csögör Z, Herrenbauer M, Perner I, Schmidt K, Posten C (1999) Design of a photobioreactor for modelling purposes. Chem Eng Process 38:517–523

    Article  Google Scholar 

  16. Csögör Z, Herrenbauer M, Schmidt K, Posten C (2001) Light distribution in a novel photobioreactor–modelling for optimization. J Appl Phycol 13:325–333

    Article  Google Scholar 

  17. Heinrich JM, Nizawa I, Botta FA, Trombert AR, Irazoqui HA (2013) Stratification of the radiation field inside a photobioreactor during microalgae growth. Photochem Photobiol 89:1127–1134. doi:10.1111/php.12095

    Article  CAS  Google Scholar 

  18. Himmelblau D (2000) Applications of artificial neural networks in chemical engineering. Korean J Chem Eng 17:373–392

    Article  CAS  Google Scholar 

  19. Kamimura R, Konstantinov K, Stephanopoulos G (1996) Knowledge-based systems, artificial neural networks and pattern recognition: applications to biotechnological processes. Curr Opin Biotechnol 7:231–234

    Article  CAS  Google Scholar 

  20. Joint Genome Institute of the US Department of Energy, Rhodopseudomonas palustris CGA009, http://genome.jgi-psf.org/rhopa/rhopa.home.html. Accessed 22 Jul 2011

  21. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. doi:10.1007/s11274-006-9190-9

    Article  CAS  Google Scholar 

  22. Harano Y, Smith JM (1968) Tubular flow photoreactors for complex, Nonchain Kinetics. AIChE J 14:584–591

    Article  CAS  Google Scholar 

  23. Huff JE, Walker CA (1962) The photochlorination of chloroform in continuous flow systems. AIChE J 8:193–200

    Article  CAS  Google Scholar 

  24. Matsuura T, Smith JM (1970) Light distribution in cylindrical photoreactors. AIChE J 16:321–324

    Article  CAS  Google Scholar 

  25. Matsuura T, Smith JM (1970) Photodecomposition kinetic of formic acid in aqueous solution. AIChE J 16:1064–1071

    Article  CAS  Google Scholar 

  26. Jacobi A, Steinweg C, Rosello-Sastre R, Posten C (2012) Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. Eng Life Sci 12:621–630

    Article  CAS  Google Scholar 

  27. Cornet J-F, Dussap CG, Gros JB, Binois C, Lasseur C (1995) A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem Eng Sci 50:1489–1500

    Article  CAS  Google Scholar 

  28. Weissing JF, Huisman J (1994) Growth and competition in a light gradient. J Theor Biol 168:323–336

    Article  Google Scholar 

  29. Reynolds HL, Pacala SW (1993) An analytical treatment of root-to-shoot ratio and plant competition for soil nutrient and light. Am Nat 141:51–70

    Article  CAS  Google Scholar 

  30. Khalil HK (2002) Nonlinear systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  31. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  32. Ferrari S, Stengel RF (2005) Smooth function approximation using neural networks. IEEE Trans Neural Netw 16:24–38

    Article  Google Scholar 

  33. Demuth H, Beale M. (2001) Neural Network Toolbox for use with MATLAB, version 4, User’s Guide, The MathWorks Inc, Natick MA

  34. Malik KA (1983) A modified method for the cultivation of phototrophic bacteria. J Microbiol Methods 1:343–352

    Article  Google Scholar 

  35. Levenberg K (1944) A Method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  36. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441. doi:10.1137/0111030

    Article  Google Scholar 

  37. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7. MIT Press, Cambridge

    Google Scholar 

  38. MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447

    Article  Google Scholar 

Download references

Acknowledgments

The support of Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico, Project (CB-2008-01/101971) and the DAAD “Exceed” program at the TU Braunschweig, Germany, to this project are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Alcaraz-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Peña, R., Alcaraz-González, V., González-Álvarez, V. et al. Neural network modeling of the light profile in a novel photobioreactor. Bioprocess Biosyst Eng 37, 1031–1042 (2014). https://doi.org/10.1007/s00449-013-1073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1073-5

Keywords

Navigation