Skip to main content

Advertisement

Log in

Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The cDNAs of six manganese-dependent peroxidases (MnPs) were isolated from white-rot fungus Polyporus brumalis. The MnP proteins shared similar properties with each other in terms of size (approximately 360–365 amino acids) and primary structure, showing 62–96 % amino acid sequence identity. RT-PCR analysis indicated that these six genes were predominantly expressed in shallow stationary culture (SSC) in a liquid medium. Gene expression was induced by treatment with dibutyl phthalate (DBP) and wood chips. Expression of pbmnp4 was strongly induced by both treatments, whereas that of pbmnp5 was induced only by DBP, while pbmnp6 was induced by wood chips only. Then, we overexpressed pbmnp4 in P. brumalis under the control of the GPD promoter. Overexpression of pbmnp4 effectively increased MnP activity; the transformant that had the highest MnP activity also demonstrated the most effective decolorization of Remazol Brilliant Blue R dye. Identification of MnP cDNAs can contribute to the efficient production of lignin-degradation enzymes and may lead to utilization of basidiomycetous fungi for degradation of lignin and numerous recalcitrant xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228(4706):1434–1436

    Article  CAS  Google Scholar 

  2. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341

    Article  CAS  Google Scholar 

  3. Hammel KE, Kalyanaraman B, Kirk TK (1986) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83(11):3708–3712

    Article  CAS  Google Scholar 

  4. Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 12(14):5365–5370

    Article  Google Scholar 

  5. Michel FC Jr, Dass SB, Grulke EA, Reddy CA (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl Environ Microbiol 57(8):2368–2375

    CAS  Google Scholar 

  6. Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies Kraft pulp. Appl Environ Microbiol 59(2):260–265

    CAS  Google Scholar 

  7. Urzúa U, Fernando-Larrondo L, Lobos S, Larraín J, Vicuña R (1995) Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett 4(2):132–136

    Article  Google Scholar 

  8. Sedighi M, Karimi A, Vahabzadeh F (2009) Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. J Hazard Mater 30(1–3):88–93

    Article  CAS  Google Scholar 

  9. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81(8):2280–2284

    Article  CAS  Google Scholar 

  10. Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57(3):605–622

    CAS  Google Scholar 

  11. Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol 58(11):3605–3613

    CAS  Google Scholar 

  12. Gill PK, Arora DS, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. J Ind Microbiol Biotechnol 28(4):201–203

    Article  CAS  Google Scholar 

  13. Lobos S, Larraín J, Salas L, Cullen D, Vicuña R (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology 140(10):2691–2698

    Article  CAS  Google Scholar 

  14. Tien M, Tu C-PD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326(6112):520–523

    Article  CAS  Google Scholar 

  15. Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264(9):5036–5040

    CAS  Google Scholar 

  16. Dass SB, Reddy CA (1990) Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 57(3):221–224

    Article  CAS  Google Scholar 

  17. Orth A, Rzhetskaya M, Cullen D, Tien M (1994) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase genes. Gene 148(1):161–165

    Article  CAS  Google Scholar 

  18. Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2004) Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65(3):287–294

    Article  CAS  Google Scholar 

  19. Johansson T, Nymann P, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase encoding gene from the ligninolytic fungus Trametes versicolor PRL572. Appl Environ Microbiol 68(4):2077–2080

    Article  CAS  Google Scholar 

  20. Manubens A, Avila M, Canessa P, Vicuna R (2003) Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43(6):433–438

    Article  CAS  Google Scholar 

  21. Hakala T, Hilden K, Maijala P, Olsson C, Hadakka A (2006) Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73(4):839–849

    Article  CAS  Google Scholar 

  22. Pease EA, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174(11):3532–3540

    CAS  Google Scholar 

  23. Kirk TK, Tien M, Faison BD (1984) Biochemistry of the oxidation of lignin by Phanerochaete chrysosporium. Biotechnol Adv 2(2):183–199

    Article  CAS  Google Scholar 

  24. Martinez D, Larrondo LF, Putnam N, Sollewijm Gelpke MD, Huang K, Chapman J, Jelfenbein KG, Ramaiya P, Detter JC, Larimer F et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–697

    Article  CAS  Google Scholar 

  25. Kim Y, Yeo S, Kum J, Song HG, Choi HT (2005) Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol 43(6):569–571

    CAS  Google Scholar 

  26. Yeo S, Park N, Song HG, Choi HT (2007) Generation of a transformant showing higher manganese peroxidase (MnP) activity by overexpression of MnP gene in Trametes versicolor. J Microbiol 45(3):213–218

    CAS  Google Scholar 

  27. Han M, Choi H, Song HG (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42(2):94–98

    CAS  Google Scholar 

  28. Lee SM, Lee JW, Koo BW, Kim MK, Choi DH, Choi IG (2007) Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnol Bioeng 97(6):1516–1522

    Article  CAS  Google Scholar 

  29. Lee SM, Park KR, Lee SS, Kim M, Choi IG (2005) Biodegradation of phthalic acid by white rot fungus, Polyporus brumalis. Mokchae Konghak 33(1):48–57

    Google Scholar 

  30. Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45(6):485–491

    CAS  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  32. Leem Y, Kim S, Ross I, Choi H (1999) Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration. FEMS Microbiol Lett 172:35–40

    Article  CAS  Google Scholar 

  33. Carles R, Pere P (2006) Specific use of start codons and cellular localization of splice variants of human phosphodiesterase 9A gene. BMC Mol Biol 7(39):1–9

    Google Scholar 

  34. Nguyen PS (2009) The A312L 5′-UTR of Chlorella virus PBCV-1 is a translational enhancer in Arabidopsis thaliana. Virus Res 40(1–2):138–146

    Article  CAS  Google Scholar 

  35. Canales M, Lobos S, Vicuña R (1998) Molecular modeling of manganese peroxidase from the lignin-degrading fungus Ceriporiopsis subvermispora and structural comparison with other peroxidases. Elec J Biotech 1(2):96–102

    Article  Google Scholar 

  36. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 272(28):17574–17580

    Article  CAS  Google Scholar 

  37. Schoemaker HE, Lundell TK, Floris R, Glumoff T, Winterhalter KH, Piontek K (1994) Do carbohydrates play a role in lignin peroxidase cycle? Redox catalysis in the endergonic region of the driving force. Bioorg Med Chem 2(6):509–519

    Article  CAS  Google Scholar 

  38. Choinowski T, Blodig W, Winterhalter K, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxyl group on the Cb of tryptophan 171: a novel radical site formed during redox cycle. J Mol Biol 286(3):809–827

    Article  CAS  Google Scholar 

  39. Pasti MB, Crawford DL (1991) Relationships between the abilities of Streptomycetes to decolorize three anthrone-type dyes and to degrade lignocelluloses. Can J Microbiol 37:902–907

    Article  CAS  Google Scholar 

  40. Kum H, Lee S, Ryu S, Choi HT (2011) Degradation of endocrine disrupting chemicals by genetic transformants with two lignin degrading enzymes in Phlebia tremellosa. J Microbiol 49(5):824–827

    Article  CAS  Google Scholar 

  41. Ruiz-Dueñas FJ, Morales M, Garcia E, Miki Y, Martinez MJ, Martinez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with the grant funded by Korea Forest Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myungkil Kim or Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, SH., Kim, B., Kim, M. et al. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis . Bioprocess Biosyst Eng 37, 393–400 (2014). https://doi.org/10.1007/s00449-013-1004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1004-5

Keywords

Navigation