Skip to main content
Log in

Penicillin acylase immobilization depending on macromolecular crowding and catalysis in aqueous–organic medium

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To enhance penicillin acylase (PA) performance, it was immobilized in mesocellular silica foams (MCFs) depended on macromolecular crowding and applied to catalysis in non-aqueous medium. Ficoll 70, dextran 10,000, dextran 40,000 and bovine serum albumin were co-assembled with PA. It was observed that specific activity of PA assembled in MCFs with dextran 10,000 in 80% cyclohexane (v/v) was 233.2 U/mg, 200% as that of PA assembled in MCFs in 80% cyclohexane and 323.5% as that of free PA in full aqueous medium. As content of alkane increased, activity of PA in MCFs with macromolecules varied slightly. In addition, PA co-immobilized with dextran 10 in MCFs retained 58.2% of its initial activity after heating at 50°C for 4 h, 1.2 times higher than that of PA immobilized alone in MCFs. The results showed that macromolecular crowding was favorable for immobilization of PA and its catalysis in suitable aqueous–organic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chandel AK, Rao LV, Narasu ML et al (2008) The realm of penicillin G acylase in beta-lactam antibiotics. Enzyme Microb Technol 42:199–207

    CAS  Google Scholar 

  2. Parmar A, Kumar H, Marwaha S et al (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289–301

    Article  CAS  Google Scholar 

  3. Cao LQ, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  Google Scholar 

  4. Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905–926

    Article  CAS  Google Scholar 

  5. Wang AM, Wang H, Zhu SM et al (2008) An efficient immobilizing technique of penicillin acylase with combining mesocellular silica foams support and p-benzoquinone cross linker. Bioprocess Biosyst Eng 31:509–517

    Article  CAS  Google Scholar 

  6. Wilson L, Illanes A, Abian O et al (2004) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules 5:852–857

    Article  CAS  Google Scholar 

  7. Ferreira JS, Straathof AJJ, Franco TT et al (2004) Activity and stability of immobilized penicillin amidase at low pH values. J Mol Catal B Enzym 27:29–35

    Article  CAS  Google Scholar 

  8. Cao XJ, Wu XY, Fonseca LJP et al (2004) Production of 6-aminopenicillanic acid in aqueous two-phase systems by recombinant Escherichia coli with intracellular penicillin acylase. Biotechnol Lett 26:97–101

    Article  Google Scholar 

  9. Abian O, Mateo C, Fernandez-Lorente G et al (2003) Improving the industrial production of 6-APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents. Biotechnol Prog 19:1639–1642

    Article  CAS  Google Scholar 

  10. Montes T, Grazu V, Manso I et al (2007) Improved stabilization of genetically modified penicillin G acylase in the presence of organic cosolvents by co-immobilization of the enzyme with polyethyleneimine. Adv Synth Catal 349:459–464

    Article  CAS  Google Scholar 

  11. Jiang M, Guo ZH (2007) Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase. J Am Chem Soc 129:730–731

    Article  CAS  Google Scholar 

  12. Kuzu H, Altikatoglu M (2008) A study for HRP-dextran complexes with enhanced stabilities. FEBS J 275:410

    Google Scholar 

  13. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  14. Wang ZL, Guo YJ, Bao D et al (2006) Direct extraction of phenylacetic acid from immobilised enzymatic hydrolysis of penicillin G with cloud point extraction. J Chem Technol Biotechnol 81:560–565

    Article  CAS  Google Scholar 

  15. Wyss A, Seitert H, von Stockar U et al (2005) Novel reactive perstraction system applied to the hydrolysis of penicillin G. Biotechnol Bioeng 91:227–236

    Article  CAS  Google Scholar 

  16. Wang L, Wang ZL, Xu JH et al (2006) An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system. Bioprocess Biosyst Eng 29:157–162

    Article  CAS  Google Scholar 

  17. Schmidt-Winkel P, Lukens WW, Zhao DY et al (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121:254–255

    Article  CAS  Google Scholar 

  18. Wang AM, Liu MQ, Wang H et al (2008) Improving enzyme immobilization in mesocellular siliceous foams by microwave irradiation. J Biosci Bioeng 106:286–291

    Article  CAS  Google Scholar 

  19. Bradford MMA (1976) Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–250

    Article  CAS  Google Scholar 

  20. Shewale JG, Kumar KK, Ambekar GR (1987) Evaluation of determination of 6-aminopenicillanic acid by p-dimethylaminobenzaldehyde. Biotechnol Tech 1:69–72

    Article  CAS  Google Scholar 

  21. Ellis RJ, Minton AP (2003) Cell biology—join the crowd. Nature 425:27–28

    Article  CAS  Google Scholar 

  22. Minh DDL, Chang CE, Trylska J et al (2006) The influence of macromolecular crowding on HIV-1 protease internal dynamics. J Am Chem Soc 128:6006–6007

    Article  CAS  Google Scholar 

  23. Ping GH, Yuan JM (2004) A study of macromolecular crowding effects on protein dynamics using lattice model. Biophys J 86:497A

    Google Scholar 

  24. Frauenfelder H (2008) What determines the speed limit on enzyme catalysis? Nat Chem Biol 4:21–22

    Article  CAS  Google Scholar 

  25. Perutz MF (1978) Electrostatics effects in proteins. Science 201:1187–1191

    Article  CAS  Google Scholar 

  26. Affleck R, Haynes CA, Clark DS (1992) Solvent dielectric effects on protein dynamics. Proc Natl Acad Sci USA 89:5167–5170

    Article  CAS  Google Scholar 

  27. Affleck R, Xu ZF, Suzawa V et al (1992) Enzymatic catalysis and dynamics in low water environments. Proc Natl Acad Sci USA 89:1100–1104

    Article  CAS  Google Scholar 

  28. Yan M, Ge J, Liu Z et al (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J Am Chem Soc 128:11008–11009

    Article  CAS  Google Scholar 

  29. Arroyo M, Torres R, de la Mata I et al (1999) Interaction of penicillin V acylase with organic solvents: catalytic activity modulation on the hydrolysis of penicillin V. Enzyme Microb Technol 25:378–383

    Article  CAS  Google Scholar 

  30. Wang QG, Gao QM, Shi JL (2004) Enhanced catalytic activity of hemoglobin in organic solvents by layered titanate immobilization. J Am Chem Soc 126:14346–14347

    Article  CAS  Google Scholar 

  31. Bindhu LV, Abraham TE (2003) Preparation and kinetic studies of surfactant-horseradish peroxidase ion paired complex in organic media. Biochem Eng J 15:47–57

    Article  CAS  Google Scholar 

  32. Wang XQ, Lu DN, Austin R et al (2007) Protein refolding assisted by periodic mesoporous organosilicas. Langmuir 23:5735–5739

    Article  CAS  Google Scholar 

  33. Du F, Zhou Z, Mo ZY et al (2006) Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments. J Mol Biol 364:469–482

    Article  CAS  Google Scholar 

  34. Moran-Zorzano MT, Viale A, Munoz F et al (2007) Escherichia coli AspP activity is enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars. FEBS Lett 581:1035–1040

    Article  CAS  Google Scholar 

  35. Mateo C, Abian O, Fernandez-Lorente G et al (2002) Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Prog 18:629–634

    Article  CAS  Google Scholar 

  36. Lopez-Gallego F, Betancor L, Hidalgo A et al (2004) Optimization of an industrial biocatalyst of glutaryl acylase: stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. J Biotechnol 111:219–227

    Article  CAS  Google Scholar 

  37. Lopez-Gallego F, Montes T, Fuentes M et al (2005) Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J Biotechnol 116:1–10

    Article  CAS  Google Scholar 

  38. Hari Krishna S (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20:239–267

    Article  CAS  Google Scholar 

  39. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  CAS  Google Scholar 

  40. Sasahara K, McPhie P, Minton AP (2003) Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 326:1227–1237

    Article  CAS  Google Scholar 

  41. Garg S, Kumar A (2007) Immobilization of starch phosphorylase from seeds of Indian millet (Pennisetum typhoides) variety KB 560. Afr J Biotechnol 6:2715–2720

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA02Z211), National Natural Science Foundation of China (20376034), Natural Science Foundation of Jiangsu Province of China (BK2006181) and Foundation of Jiangsu Province of China for College Postgraduate Students in Innovation Engineering (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, J., Wang, A., Zhou, C. et al. Penicillin acylase immobilization depending on macromolecular crowding and catalysis in aqueous–organic medium. Bioprocess Biosyst Eng 32, 765–772 (2009). https://doi.org/10.1007/s00449-009-0301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0301-5

Keywords

Navigation